Climate Change Essay for Students and Children

500+ words climate change essay.

Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ecosystem and ecology. Due to these changes, a number of species of plants and animals have gone extinct.

what is climate change in essay

When Did it Start?

The climate started changing a long time ago due to human activities but we came to know about it in the last century. During the last century, we started noticing the climatic change and its effect on human life. We started researching on climate change and came to know that the earth temperature is rising due to a phenomenon called the greenhouse effect. The warming up of earth surface causes many ozone depletion, affect our agriculture , water supply, transportation, and several other problems.

Reason Of Climate Change

Although there are hundreds of reason for the climatic change we are only going to discuss the natural and manmade (human) reasons.

Get the huge list of more than 500 Essay Topics and Ideas

Natural Reasons

These include volcanic eruption , solar radiation, tectonic plate movement, orbital variations. Due to these activities, the geographical condition of an area become quite harmful for life to survive. Also, these activities raise the temperature of the earth to a great extent causing an imbalance in nature.

Human Reasons

Man due to his need and greed has done many activities that not only harm the environment but himself too. Many plant and animal species go extinct due to human activity. Human activities that harm the climate include deforestation, using fossil fuel , industrial waste , a different type of pollution and many more. All these things damage the climate and ecosystem very badly. And many species of animals and birds got extinct or on a verge of extinction due to hunting.

Effects Of Climatic Change

These climatic changes have a negative impact on the environment. The ocean level is rising, glaciers are melting, CO2 in the air is increasing, forest and wildlife are declining, and water life is also getting disturbed due to climatic changes. Apart from that, it is calculated that if this change keeps on going then many species of plants and animals will get extinct. And there will be a heavy loss to the environment.

What will be Future?

If we do not do anything and things continue to go on like right now then a day in future will come when humans will become extinct from the surface of the earth. But instead of neglecting these problems we start acting on then we can save the earth and our future.

what is climate change in essay

Although humans mistake has caused great damage to the climate and ecosystem. But, it is not late to start again and try to undo what we have done until now to damage the environment. And if every human start contributing to the environment then we can be sure of our existence in the future.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [ { “@type”: “Question”, “name”: “What is climate change and how it affects humans?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Climate change is a phenomenon that happens because of human and natural reasons. And it is one of the most serious problems that not only affect the environment but also human beings. It affects human in several ways but in simple language, we can say that it causes many diseases and disasters that destroy life on earth.” } }, { “@type”: “Question”, “name”: “Can we stop these climatic changes?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Yes, we can stop these climatic changes but for that, every one of us has to come forward and has to adapt ways that can reduce and control our bad habits that affect the environment. We have to the initiative and make everyone aware of the climatic changes.” } } ] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

what is climate change in essay

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

what is climate change in essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

what is climate change in essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Climate Change: Check Samples in 100, 250 Words

what is climate change in essay

  • Updated on  
  • Sep 21, 2023

what is climate change in essay

Writing an essay on climate change is crucial to raise awareness and advocate for action. The world is facing environmental challenges, so in a situation like this such essay topics can serve as s platform to discuss the causes, effects, and solutions to this pressing issue. They offer an opportunity to engage readers in understanding the urgency of mitigating climate change for the sake of our planet’s future.

Must Read: Essay On Environment  

Table of Contents

  • 1 What Is Climate Change?
  • 2 What are the Causes of Climate Change?
  • 3 What are the effects of Climate Change?
  • 4 How to fight climate change?
  • 5 Essay On Climate Change in 100 Words
  • 6 Climate Change Sample Essay 250 Words

What Is Climate Change?

Climate change is the significant variation of average weather conditions becoming, for example, warmer, wetter, or drier—over several decades or longer. It may be natural or anthropogenic. However, in recent times, it’s been in the top headlines due to escalations caused by human interference.

What are the Causes of Climate Change?

Obama at the First Session of COP21 rightly quoted “We are the first generation to feel the impact of climate change, and the last generation that can do something about it.”.Identifying the causes of climate change is the first step to take in our fight against climate change. Below stated are some of the causes of climate change:

  • Greenhouse Gas Emissions: Mainly from burning fossil fuels (coal, oil, and natural gas) for energy and transportation.
  • Deforestation: The cutting down of trees reduces the planet’s capacity to absorb carbon dioxide.
  • Industrial Processes: Certain manufacturing activities release potent greenhouse gases.
  • Agriculture: Livestock and rice cultivation emit methane, a potent greenhouse gas.

What are the effects of Climate Change?

Climate change poses a huge risk to almost all life forms on Earth. The effects of climate change are listed below:

  • Global Warming: Increased temperatures due to trapped heat from greenhouse gases.
  • Melting Ice and Rising Sea Levels: Ice caps and glaciers melt, causing oceans to rise.
  • Extreme Weather Events: More frequent and severe hurricanes, droughts, and wildfires.
  • Ocean Acidification: Oceans absorb excess CO2, leading to more acidic waters harming marine life.
  • Disrupted Ecosystems: Shifting climate patterns disrupt habitats and threaten biodiversity.
  • Food and Water Scarcity: Altered weather affects crop yields and strains water resources.
  • Human Health Risks: Heat-related illnesses and the spread of diseases.
  • Economic Impact: Damage to infrastructure and increased disaster-related costs.
  • Migration and Conflict: Climate-induced displacement and resource competition.

How to fight climate change?

‘Climate change is a terrible problem, and it absolutely needs to be solved. It deserves to be a huge priority,’ says Bill Gates. The below points highlight key actions to combat climate change effectively.

  • Energy Efficiency: Improve energy efficiency in all sectors.
  • Protect Forests: Stop deforestation and promote reforestation.
  • Sustainable Agriculture: Adopt eco-friendly farming practices.
  • Advocacy: Raise awareness and advocate for climate-friendly policies.
  • Innovation: Invest in green technologies and research.
  • Government Policies: Enforce climate-friendly regulations and targets.
  • Corporate Responsibility: Encourage sustainable business practices.
  • Individual Action: Reduce personal carbon footprint and inspire others.

Essay On Climate Change in 100 Words

Climate change refers to long-term alterations in Earth’s climate patterns, primarily driven by human activities, such as burning fossil fuels and deforestation, which release greenhouse gases into the atmosphere. These gases trap heat, leading to global warming. The consequences of climate change are widespread and devastating. Rising temperatures cause polar ice caps to melt, contributing to sea level rise and threatening coastal communities. Extreme weather events, like hurricanes and wildfires, become more frequent and severe, endangering lives and livelihoods. Additionally, shifts in weather patterns can disrupt agriculture, leading to food shortages. To combat climate change, global cooperation, renewable energy adoption, and sustainable practices are crucial for a more sustainable future.

Must Read: Essay On Global Warming

Climate Change Sample Essay 250 Words

Climate change represents a pressing global challenge that demands immediate attention and concerted efforts. Human activities, primarily the burning of fossil fuels and deforestation, have significantly increased the concentration of greenhouse gases in the atmosphere. This results in a greenhouse effect, trapping heat and leading to a rise in global temperatures, commonly referred to as global warming.

The consequences of climate change are far-reaching and profound. Rising sea levels threaten coastal communities, displacing millions and endangering vital infrastructure. Extreme weather events, such as hurricanes, droughts, and wildfires, have become more frequent and severe, causing devastating economic and human losses. Disrupted ecosystems affect biodiversity and the availability of vital resources, from clean water to agricultural yields.

Moreover, climate change has serious implications for food and water security. Changing weather patterns disrupt traditional farming practices and strain freshwater resources, potentially leading to conflicts over access to essential commodities.

Addressing climate change necessitates a multifaceted approach. First, countries must reduce their greenhouse gas emissions through the transition to renewable energy sources, increased energy efficiency, and reforestation efforts. International cooperation is crucial to set emission reduction targets and hold nations accountable for meeting them.

In conclusion, climate change is a global crisis with profound and immediate consequences. Urgent action is needed to mitigate its impacts and secure a sustainable future for our planet. By reducing emissions and implementing adaptation strategies, we can protect vulnerable communities, preserve ecosystems, and ensure a livable planet for future generations. The time to act is now.

Climate change refers to long-term shifts in Earth’s climate patterns, primarily driven by human activities like burning fossil fuels and deforestation.

Five key causes of climate change include excessive greenhouse gas emissions from human activities, notably burning fossil fuels and deforestation. 

We hope this blog gave you an idea about how to write and present an essay on climate change that puts forth your opinions. The skill of writing an essay comes in handy when appearing for standardized language tests. Thinking of taking one soon? Leverage Edu provides the best online test prep for the same via Leverage Live . Register today to know more!

' src=

Amisha Khushara

Hey there! I'm a content writer who turns complex ideas into clear, engaging stories. Think of me as your translator, taking expert knowledge and making it interesting and relatable for everyone.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

what is climate change in essay

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

what is climate change in essay

Resend OTP in

what is climate change in essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2025

September 2025

What is your budget to study abroad?

what is climate change in essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

what is climate change in essay

Make your study abroad dream a reality in January 2022 with

what is climate change in essay

India's Biggest Virtual University Fair

what is climate change in essay

Essex Direct Admission Day

Why attend .

what is climate change in essay

Don't Miss Out

ENCYCLOPEDIC ENTRY

Climate change.

Climate change is a long-term shift in global or regional climate patterns. Often climate change refers specifically to the rise in global temperatures from the mid-20th century to present.

Earth Science, Climatology

Fracking tower

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Photograph by Mark Thiessen / National Geographic

Fracking is a controversial form of drilling that uses high-pressure liquid to create cracks in underground shale to extract natural gas and petroleum. Carbon emissions from fossils fuels like these have been linked to global warming and climate change.

Learning materials

Upcoming event.

  • Explorer Classroom: Photographing the Frozen Frontier with Esther Horvath | December 5

Climate is sometimes mistaken for weather. But climate is different from weather because it is measured over a long period of time, whereas weather can change from day to day, or from year to year. The climate of an area includes seasonal temperature and rainfall averages, and wind patterns. Different places have different climates. A desert, for example, is referred to as an arid climate because little water falls, as rain or snow, during the year. Other types of climate include tropical climates, which are hot and humid , and temperate climates, which have warm summers and cooler winters.

Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely on farming because expected temperature and rainfall levels can no longer be relied on. Climate change has also been connected with other damaging weather events such as more frequent and more intense hurricanes, floods, downpours, and winter storms.

In polar regions, the warming global temperatures associated with climate change have meant ice sheets and glaciers are melting at an accelerated rate from season to season. This contributes to sea levels rising in different regions of the planet. Together with expanding ocean waters due to rising temperatures, the resulting rise in sea level has begun to damage coastlines as a result of increased flooding and erosion.

The cause of current climate change is largely human activity, like burning fossil fuels , like natural gas, oil, and coal. Burning these materials releases what are called greenhouse gases into Earth’s atmosphere . There, these gases trap heat from the sun’s rays inside the atmosphere causing Earth’s average temperature to rise. This rise in the planet's temperature is called global warming. The warming of the planet impacts local and regional climates. Throughout Earth's history, climate has continually changed. When occuring naturally, this is a slow process that has taken place over hundreds and thousands of years. The human influenced climate change that is happening now is occuring at a much faster rate.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

August 29, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Climate Change Essay

500+ words essay on climate change.

Climate change is a major global challenge today, and the world is becoming more vulnerable to this change. Climate change refers to the changes in Earth’s climate condition. It describes the changes in the atmosphere which have taken place over a period ranging from decades to millions of years. A recent report from the United Nations predicted that the average global temperature could increase by 6˚ Celsius at the end of the century. Climate change has an adverse effect on the environment and ecosystem. With the help of this essay, students will get to know the causes and effects of climate change and possible solutions. Also, they will be able to write essays on similar topics and can boost their writing skills.

What Causes Climate Change?

The Earth’s climate has always changed and evolved. Some of these changes have been due to natural causes such as volcanic eruptions, floods, forest fires etc., but quite a few of them are due to human activities. Human activities such as deforestation, burning fossil fuels, farming livestock etc., generate an enormous amount of greenhouse gases. This results in the greenhouse effect and global warming which are the major causes of climate change.

Effects of Climate Change

If the current situation of climate change continues in a similar manner, then it will impact all forms of life on the earth. The earth’s temperature will rise, the monsoon patterns will change, sea levels will rise, and storms, volcanic eruptions and natural disasters will occur frequently. The biological and ecological balance of the earth will get disturbed. The environment will get polluted and humans will not be able to get fresh air to breathe and fresh water to drink. Life on earth will come to an end.

Steps to be Taken to Reduce Climate Change

The Government of India has taken many measures to improve the dire situation of Climate Change. The Ministry of Environment and Forests is the nodal agency for climate change issues in India. It has initiated several climate-friendly measures, particularly in the area of renewable energy. India took several steps and policy initiatives to create awareness about climate change and help capacity building for adaptation measures. It has initiated a “Green India” programme under which various trees are planted to make the forest land more green and fertile.

We need to follow the path of sustainable development to effectively address the concerns of climate change. We need to minimise the use of fossil fuels, which is the major cause of global warming. We must adopt alternative sources of energy, such as hydropower, solar and wind energy to make a progressive transition to clean energy. Mahatma Gandhi said that “Earth provides enough to satisfy every man’s need, but not any man’s greed”. With this view, we must remodel our outlook and achieve the goal of sustainable development. By adopting clean technologies, equitable distribution of resources and addressing the issues of equity and justice, we can make our developmental process more harmonious with nature.

We hope students liked this essay on Climate Change and gathered useful information on this topic so that they can write essays in their own words. To get more study material related to the CBSE, ICSE, State Board and Competitive exams, keep visiting the BYJU’S website.

Frequently Asked Questions on climate change Essay

What are the reasons for climate change.

1. Deforestation 2. Excessive usage of fossil fuels 3. Water, Soil pollution 4. Plastic and other non-biodegradable waste 5. Wildlife and nature extinction

How can we save this climate change situation?

1. Avoid over usage of natural resources 2. Do not use or buy items made from animals 3. Avoid plastic usage and pollution

Are there any natural causes for climate change?

Yes, some of the natural causes for climate change are: 1. Solar variations 2. Volcanic eruption and tsunamis 3. Earth’s orbital changes

CBSE Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

what is climate change in essay

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Climatic variation since the last glaciation
  • The greenhouse effect
  • Radiative forcing
  • Water vapour
  • Carbon dioxide
  • Surface-level ozone and other compounds
  • Nitrous oxides and fluorinated gases
  • Land-use change
  • Stratospheric ozone depletion
  • Volcanic aerosols
  • Variations in solar output
  • Variations in Earth’s orbit
  • Water vapour feedback
  • Cloud feedbacks
  • Ice albedo feedback
  • Carbon cycle feedbacks
  • Modern observations
  • Prehistorical climate records
  • Theoretical climate models
  • Patterns of warming
  • Precipitation patterns
  • Regional predictions
  • Ice melt and sea level rise
  • Ocean circulation changes
  • Tropical cyclones
  • Environmental consequences of global warming
  • Socioeconomic consequences of global warming

Grinnell Glacier shrinkage

How does global warming work?

Where does global warming occur in the atmosphere, why is global warming a social problem, where does global warming affect polar bears.

In late August 2016, sunlight returned to the Antarctic Peninsula and unveiled a rift across the Larsen C Ice Shelf that had grown longer and deeper over the austral winter

global warming

Our editors will review what you’ve submitted and determine whether to revise the article.

  • U.S. Department of Transportation - Global Warming: A Science Overview
  • NOAA Climate.gov - Climate Change: Global Temperature
  • Natural Resources Defense Council - Global Warming 101
  • American Institute of Physics - The discovery of global warming
  • LiveScience - Causes of Global Warming
  • global warming - Children's Encyclopedia (Ages 8-11)
  • global warming - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Human activity affects global surface temperatures by changing Earth ’s radiative balance—the “give and take” between what comes in during the day and what Earth emits at night. Increases in greenhouse gases —i.e., trace gases such as carbon dioxide and methane that absorb heat energy emitted from Earth’s surface and reradiate it back—generated by industry and transportation cause the atmosphere to retain more heat, which increases temperatures and alters precipitation patterns.

Global warming, the phenomenon of increasing average air temperatures near Earth’s surface over the past one to two centuries, happens mostly in the troposphere , the lowest level of the atmosphere, which extends from Earth’s surface up to a height of 6–11 miles. This layer contains most of Earth’s clouds and is where living things and their habitats and weather primarily occur.

Continued global warming is expected to impact everything from energy use to water availability to crop productivity throughout the world. Poor countries and communities with limited abilities to adapt to these changes are expected to suffer disproportionately. Global warming is already being associated with increases in the incidence of severe and extreme weather, heavy flooding , and wildfires —phenomena that threaten homes, dams, transportation networks, and other facets of human infrastructure. Learn more about how the IPCC’s Sixth Assessment Report, released in 2021, describes the social impacts of global warming.

Polar bears live in the Arctic , where they use the region’s ice floes as they hunt seals and other marine mammals . Temperature increases related to global warming have been the most pronounced at the poles, where they often make the difference between frozen and melted ice. Polar bears rely on small gaps in the ice to hunt their prey. As these gaps widen because of continued melting, prey capture has become more challenging for these animals.

Recent News

global warming , the phenomenon of increasing average air temperatures near the surface of Earth over the past one to two centuries. Climate scientists have since the mid-20th century gathered detailed observations of various weather phenomena (such as temperatures, precipitation , and storms) and of related influences on climate (such as ocean currents and the atmosphere’s chemical composition). These data indicate that Earth’s climate has changed over almost every conceivable timescale since the beginning of geologic time and that human activities since at least the beginning of the Industrial Revolution have a growing influence over the pace and extent of present-day climate change .

Giving voice to a growing conviction of most of the scientific community , the Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC’s Sixth Assessment Report (AR6), published in 2021, noted that the best estimate of the increase in global average surface temperature between 1850 and 2019 was 1.07 °C (1.9 °F). An IPCC special report produced in 2018 noted that human beings and their activities have been responsible for a worldwide average temperature increase between 0.8 and 1.2 °C (1.4 and 2.2 °F) since preindustrial times, and most of the warming over the second half of the 20th century could be attributed to human activities.

AR6 produced a series of global climate predictions based on modeling five greenhouse gas emission scenarios that accounted for future emissions, mitigation (severity reduction) measures, and uncertainties in the model projections. Some of the main uncertainties include the precise role of feedback processes and the impacts of industrial pollutants known as aerosols , which may offset some warming. The lowest-emissions scenario, which assumed steep cuts in greenhouse gas emissions beginning in 2015, predicted that the global mean surface temperature would increase between 1.0 and 1.8 °C (1.8 and 3.2 °F) by 2100 relative to the 1850–1900 average. This range stood in stark contrast to the highest-emissions scenario, which predicted that the mean surface temperature would rise between 3.3 and 5.7 °C (5.9 and 10.2 °F) by 2100 based on the assumption that greenhouse gas emissions would continue to increase throughout the 21st century. The intermediate-emissions scenario, which assumed that emissions would stabilize by 2050 before declining gradually, projected an increase of between 2.1 and 3.5 °C (3.8 and 6.3 °F) by 2100.

Many climate scientists agree that significant societal, economic, and ecological damage would result if the global average temperature rose by more than 2 °C (3.6 °F) in such a short time. Such damage would include increased extinction of many plant and animal species, shifts in patterns of agriculture , and rising sea levels. By 2015 all but a few national governments had begun the process of instituting carbon reduction plans as part of the Paris Agreement , a treaty designed to help countries keep global warming to 1.5 °C (2.7 °F) above preindustrial levels in order to avoid the worst of the predicted effects. Whereas authors of the 2018 special report noted that should carbon emissions continue at their present rate, the increase in average near-surface air temperature would reach 1.5 °C sometime between 2030 and 2052, authors of the AR6 report suggested that this threshold would be reached by 2041 at the latest.

Combination shot of Grinnell Glacier taken from the summit of Mount Gould, Glacier National Park, Montana in the years 1938, 1981, 1998 and 2006.

The AR6 report also noted that the global average sea level had risen by some 20 cm (7.9 inches) between 1901 and 2018 and that sea level rose faster in the second half of the 20th century than in the first half. It also predicted, again depending on a wide range of scenarios, that the global average sea level would rise by different amounts by 2100 relative to the 1995–2014 average. Under the report’s lowest-emission scenario, sea level would rise by 28–55 cm (11–21.7 inches), whereas, under the intermediate emissions scenario, sea level would rise by 44–76 cm (17.3–29.9 inches). The highest-emissions scenario suggested that sea level would rise by 63–101 cm (24.8–39.8 inches) by 2100.

greenhouse effect on Earth

The scenarios referred to above depend mainly on future concentrations of certain trace gases, called greenhouse gases , that have been injected into the lower atmosphere in increasing amounts through the burning of fossil fuels for industry, transportation , and residential uses. Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect , a warming of Earth’s surface and lower atmosphere caused by the presence of water vapour , carbon dioxide , methane , nitrous oxides , and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and nitrous oxides in the atmosphere surpassed those found in ice cores dating back 800,000 years.

what is climate change in essay

Of all these gases, carbon dioxide is the most important, both for its role in the greenhouse effect and for its role in the human economy. It has been estimated that, at the beginning of the industrial age in the mid-18th century, carbon dioxide concentrations in the atmosphere were roughly 280 parts per million (ppm). By the end of 2022 they had risen to 419 ppm, and, if fossil fuels continue to be burned at current rates, they are projected to reach 550 ppm by the mid-21st century—essentially, a doubling of carbon dioxide concentrations in 300 years.

What's the problem with an early spring?

A vigorous debate is in progress over the extent and seriousness of rising surface temperatures, the effects of past and future warming on human life, and the need for action to reduce future warming and deal with its consequences. This article provides an overview of the scientific background related to the subject of global warming. It considers the causes of rising near-surface air temperatures, the influencing factors, the process of climate research and forecasting, and the possible ecological and social impacts of rising temperatures. For an overview of the public policy developments related to global warming occurring since the mid-20th century, see global warming policy . For a detailed description of Earth’s climate, its processes, and the responses of living things to its changing nature, see climate . For additional background on how Earth’s climate has changed throughout geologic time , see climatic variation and change . For a full description of Earth’s gaseous envelope, within which climate change and global warming occur, see atmosphere .

What Is Climate Change?

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“If you don’t like the weather in New England, just wait a few minutes.” - Mark Twain

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

Yale Program on Climate Change Communication

  • About YPCCC
  • Yale Climate Connections
  • Student Employment
  • For The Media
  • Past Events
  • YPCCC in the News
  • Climate Change in the American Mind (CCAM)
  • CCAM Politics Report, Spring 2024
  • Publications
  • Climate Opinion Maps
  • Climate Opinion Factsheets
  • Six Americas Super Short Survey (SASSY)
  • Resources for Educators
  • All Tools & Interactives
  • Partner with YPCCC

Home / For Educators: Grades 6-12 / Climate Explained: Introductory Essays About Climate Change Topics

Climate Explained: Introductory Essays About Climate Change Topics

Filed under: backgrounders for educators ,.

Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it’s cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

More Activities like this

what is climate change in essay

Climate Change Basics: Five Facts, Ten Words

Backgrounders for Educators

To simplify the scientific complexity of climate change, we focus on communicating five key facts about climate change that everyone should know. 

what is climate change in essay

Why should we care about climate change?

Having different perspectives about global warming is natural, but the most important thing that anyone should know about climate change is why it matters.  

what is climate change in essay

External Resources

Looking for resources to help you and your students build a solid climate change science foundation? We’ve compiled a list of reputable, student-friendly links to help you do just that!  

Subscribe to our mailing list

Please select all the ways you would like to hear from Yale Program on Climate Change Communication:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices here.

what is climate change in essay

Explore Greyhound Nation

  • Loyola Today

Our Future Is Now - A Climate Change Essay by Francesca Minicozzi, '21

Francesca Minicozzi (class of 2021) is a Writing/Biology major who plans to study medicine after graduation. She wrote this essay on climate change for WR 355/Travel Writing, which she took while studying abroad in Newcastle in spring 2020. Although the coronavirus pandemic curtailed Francesca’s time abroad, her months in Newcastle prompted her to learn more about climate change. Terre Ryan Associate Professor, Writing Department

Our Future Is Now

By Francesca Minicozzi, '21 Writing and Biology Major

 “If you don’t mind me asking, how is the United States preparing for climate change?” my flat mate, Zac, asked me back in March, when we were both still in Newcastle. He and I were accustomed to asking each other about the differences between our home countries; he came from Cambridge, while I originated in Long Island, New York. This was one of our numerous conversations about issues that impact our generation, which we usually discussed while cooking dinner in our communal kitchen. In the moment of our conversation, I did not have as strong an answer for him as I would have liked. Instead, I informed him of the few changes I had witnessed within my home state of New York.

Francesca Minicozzi, '21

Zac’s response was consistent with his normal, diplomatic self. “I have been following the BBC news in terms of the climate crisis for the past few years. The U.K. has been working hard to transition to renewable energy sources. Similar to the United States, here in the United Kingdom we have converted over to solar panels too. My home does not have solar panels, but a lot of our neighbors have switched to solar energy in the past few years.”

“Our two countries are similar, yet so different,” I thought. Our conversation continued as we prepared our meals, with topics ranging from climate change to the upcoming presidential election to Britain’s exit from the European Union. However, I could not shake the fact that I knew so little about a topic so crucial to my generation.

After I abruptly returned home from the United Kingdom because of the global pandemic, my conversation with my flat mate lingered in my mind. Before the coronavirus surpassed climate change headlines, I had seen the number of internet postings regarding protests to protect the planet dramatically increase. Yet the idea of our planet becoming barren and unlivable in a not-so-distant future had previously upset me to the point where a part of me refused to deal with it. After I returned from studying abroad, I decided to educate myself on the climate crisis.

My quest for climate change knowledge required a thorough understanding of the difference between “climate change” and “global warming.” Climate change is defined as “a pattern of change affecting global or regional climate,” based on “average temperature and rainfall measurements” as well as the frequency of extreme weather events. 1   These varied temperature and weather events link back to both natural incidents and human activity. 2   Likewise, the term global warming was coined “to describe climate change caused by humans.” 3   Not only that, but global warming is most recently attributed to an increase in “global average temperature,” mainly due to greenhouse gas emissions produced by humans. 4

I next questioned why the term “climate change” seemed to take over the term “global warming” in the United States. According to Frank Luntz, a leading Republican consultant, the term “global warming” functions as a rather intimidating phrase. During George W. Bush’s first presidential term, Luntz argued in favor of using the less daunting phrase “climate change” in an attempt to overcome the environmental battle amongst Democrats and Republicans. 5   Since President Bush’s term, Luntz remains just one political consultant out of many politicians who has recognized the need to address climate change. In an article from 2019, Luntz proclaimed that political parties aside, the climate crisis affects everyone. Luntz argued that politicians should steer clear of trying to communicate “the complicated science of climate change,” and instead engage voters by explaining how climate change personally impacts citizens with natural disasters such as hurricanes, tornadoes, and forest fires. 6   He even suggested that a shift away from words like “sustainability” would gear Americans towards what they really want: a “cleaner, safer, healthier” environment. 7

The idea of a cleaner and heathier environment remains easier said than done. The Paris Climate Agreement, introduced in 2015, began the United Nations’ “effort to combat global climate change.” 8   This agreement marked a global initiative to “limit global temperature increase in this century to 2 degrees Celsius above preindustrial levels,” while simultaneously “pursuing means to limit the increase to 1.5 degrees.” 9    Every country on earth has joined together in this agreement for the common purpose of saving our planet. 10   So, what could go wrong here? As much as this sounds like a compelling step in the right direction for climate change, President Donald Trump thought otherwise. In June 2017, President Trump announced the withdrawal of the United States from the Paris Agreement with his proclamation of climate change as a “’hoax’ perpetrated by China.” 11   President Trump continued to question the scientific facts behind climate change, remaining an advocate for the expansion of domestic fossil fuel production. 12   He reversed environmental policies implemented by former President Barack Obama to reduce fossil fuel use. 13

Trump’s actions against the Paris Agreement, however, fail to represent the beliefs of Americans as a whole. The majority of American citizens feel passionate about the fight against climate change. To demonstrate their support, some have gone as far as creating initiatives including America’s Pledge and We Are Still In. 14   Although the United States officially exited the Paris Agreement on November 4, 2020, this withdrawal may not survive permanently. 15   According to experts, our new president “could rejoin in as short as a month’s time.” 16   This offers a glimmer of hope.

The Paris Agreement declares that the United States will reduce greenhouse gas emission levels by 26 to 28 percent by the year 2025. 17   As a leader in greenhouse gas emissions, the United States needs to accept the climate crisis for the serious challenge that it presents and work together with other nations. The concept of working coherently with all nations remains rather tricky; however, I remain optimistic. I think we can learn from how other countries have adapted to the increased heating of our planet. During my recent study abroad experience in the United Kingdom, I was struck by Great Britain’s commitment to combating climate change.

Since the United Kingdom joined the Paris Agreement, the country targets a “net-zero” greenhouse gas emission for 2050. 18   This substantial alteration would mark an 80% reduction of greenhouse gases from 1990, if “clear, stable, and well-designed policies are implemented without interruption.” 19   In order to stay on top of reducing emissions, the United Kingdom tracks electricity and car emissions, “size of onshore and offshore wind farms,” amount of homes and “walls insulated, and boilers upgraded,” as well as the development of government policies, including grants for electric vehicles. 20   A strong grip on this data allows the United Kingdom to target necessary modifications that keep the country on track for 2050. In my brief semester in Newcastle, I took note of these significant changes. The city of Newcastle is small enough that many students and faculty are able to walk or bike to campus and nearby essential shops. However, when driving is unavoidable, the majority of the vehicles used are electric, and many British citizens place a strong emphasis on carpooling to further reduce emissions. The United Kingdom’s determination to severely reduce greenhouse emissions is ambitious and particularly admirable, especially as the United States struggles to shy away from its dependence on fossil fuels.

So how can we, as Americans, stand together to combat global climate change? Here are five adjustments Americans can make to their homes and daily routines that can dramatically make a difference:

  • Stay cautious of food waste. Studies demonstrate that “Americans throw away up to 40 percent of the food they buy.” 21   By being more mindful of the foods we purchase, opting for leftovers, composting wastes, and donating surplus food to those in need, we can make an individual difference that impacts the greater good. 22   
  • Insulate your home. Insulation functions as a “cost-effective and accessible” method to combat climate change. 23   Homes with modern insulation reduce energy required to heat them, leading to a reduction of emissions and an overall savings; in comparison, older homes can “lose up to 35 percent of heat through their walls.” 24   
  • Switch to LED Lighting. LED stands for “light-emitting diodes,” which use “90 percent less energy than incandescent bulbs and half as much as compact fluorescents.” 25   LED lights create light without producing heat, and therefore do not waste energy. Additionally, these lights have a longer duration than other bulbs, which means they offer a continuing savings. 26  
  • Choose transportation wisely. Choose to walk or bike whenever the option presents itself. If walking or biking is not an option, use an electric or hybrid vehicle which emits less harmful gases. Furthermore, reduce the number of car trips taken, and carpool with others when applicable. 
  • Finally, make your voice heard. The future of our planet remains in our hands, so we might as well use our voices to our advantage. Social media serves as a great platform for this. Moreover, using social media to share helpful hints to combat climate change within your community or to promote an upcoming protest proves beneficial in the long run. If we collectively put our voices to good use, together we can advocate for change.

As many of us are stuck at home due to the COVID-19 pandemic, these suggestions are slightly easier to put into place. With numerous “stay-at-home” orders in effect, Americans have the opportunity to make significant achievements for climate change. Personally, I have taken more precautions towards the amount of food consumed within my household during this pandemic. I have been more aware of food waste, opting for leftovers when too much food remains. Additionally, I have realized how powerful my voice is as a young college student. Now is the opportunity for Americans to share how they feel about climate change. During this unprecedented time, our voice is needed now more than ever in order to make a difference.

However, on a much larger scale, the coronavirus outbreak has shed light on reducing global energy consumption. Reductions in travel, both on the roads and in the air, have triggered a drop in emission rates. In fact, the International Energy Agency predicts a 6 percent decrease in energy consumption around the globe for this year alone. 27   This drop is “equivalent to losing the entire energy demand of India.” 28   Complete lockdowns have lowered the global demand for electricity and slashed CO2 emissions. However, in New York City, the shutdown has only decreased carbon dioxide emissions by 10 percent. 29   This proves that a shift in personal behavior is simply not enough to “fix the carbon emission problem.” 30   Climate policies aimed to reduce fossil fuel production and promote clean technology will be crucial steppingstones to ameliorating climate change effects. Our current reduction of greenhouse gas emissions serves as “the sort of reduction we need every year until net-zero emissions are reached around 2050.” 31   From the start of the coronavirus pandemic, politicians came together for the common good of protecting humanity; this demonstrates that when necessary, global leaders are capable of putting humankind above the economy. 32

After researching statistics comparing the coronavirus to climate change, I thought back to the moment the virus reached pandemic status. I knew that a greater reason underlay all of this global turmoil. Our globe is in dire need of help, and the coronavirus reminds the world of what it means to work together. This pandemic marks a turning point in global efforts to slow down climate change. The methods we enact towards not only stopping the spread of the virus, but slowing down climate change, will ultimately depict how humanity will arise once this pandemic is suppressed. The future of our home planet lies in how we treat it right now. 

  • “Climate Change: What Do All the Terms Mean?,” BBC News (BBC, May 1, 2019), https://www.bbc.com/news/science-environment-48057733 )
  • Ibid. 
  • Kate Yoder, “Frank Luntz, the GOP's Message Master, Calls for Climate Action,” Grist (Grist, July 26, 2019), https://grist.org/article/the-gops-most-famous-messaging-strategist-calls-for-climate-action
  • Melissa Denchak, “Paris Climate Agreement: Everything You Need to Know,” NRDC, April 29, 2020, https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know)
  • “Donald J. Trump's Foreign Policy Positions,” Council on Foreign Relations (Council on Foreign Relations), accessed May 7, 2020, https://www.cfr.org/election2020/candidate-tracker/donald-j.-trump?gclid=CjwKCAjw4871BRAjEiwAbxXi21cneTRft_doA5if60euC6QCL7sr-Jwwv76IkgWaUTuyJNx9EzZzRBoCdjsQAvD_BwE#climate and energy )
  • David Doniger, “Paris Climate Agreement Explained: Does Congress Need to Sign Off?,” NRDC, December 15, 2016, https://www.nrdc.org/experts/david-doniger/paris-climate-agreement-explained-does-congress-need-sign )
  • “How the UK Is Progressing,” Committee on Climate Change, March 9, 2020, https://www.theccc.org.uk/what-is-climate-change/reducing-carbon-emissions/how-the-uk-is-progressing/)
  • Ibid.  
  • “Top 10 Ways You Can Fight Climate Change,” Green America, accessed May 7, 2020, https://www.greenamerica.org/your-green-life/10-ways-you-can-fight-climate-change )
  • Matt McGrath, “Climate Change and Coronavirus: Five Charts about the Biggest Carbon Crash,” BBC News (BBC, May 5, 2020), https://www.bbc.com/news/amp/science-environment-52485712 )

Accept cookies?

We use cook ies  to give you the best online experience and to show personalised content and marketing. We use them to improve our website and content as well as to tailor our digital advertising on third-party platforms. You can change your preferences at any time.  

Popular search terms:

  • British wildlife
  • Wildlife Photographer of the Year
  • Explore the Museum
  • Anthropocene

British Wildlife

Collections

Human evolution

What on Earth?

A woman steps off a bus onto a flooded Sri Lankan street

A woman steps off a bus onto a street in Dharga Town, Sri Lanka, which was flooded by heavy monsoon rains in 2010 © Hafiz Issadeen via Flickr ( CC BY 2.0 )

During Beta testing articles may only be saved for seven days.

Create a list of articles to read later. You will be able to access your list from any article in Discover.

You don't have any saved articles.

What is climate change and why does it matter?

Climate change is the defining issue of our time . We have reached a pivotal moment in deciding our planet's future.

Find out what climate change is, why it matters and what it could mean for our collective future.

What are weather, climate and climate change?

Weather refers to atmospheric conditions, such as rain or snow, happening in a place at a specific moment in time. Climate is how much, on average, a type of weather will occur over a longer period.

Dr Joeri Rogelj is a climate scientist at Imperial College London's Grantham Institute who has contributed to and led several major climate change assessments. He explains, 'Climate change is how the characteristics of the weather we experience in a certain place change.

'It can get hotter or wetter on average or have more concentrated rain in a short period, but then get longer dry periods. All of that can be a result of climate change.'

Global warming is a term used interchangeably with climate change, although the latter is preferred because the warming atmosphere and oceans are just some of the effects we see.

'It's not just about temperature. Places are also becoming wetter or drier, and in some the seasons are moving. Most importantly, in a few regions and seasons, it may actually at times be cooler than we're used to. That's confusing if you just talk about global warming.'

A view of Typhoon Utor from space as it travelled towards the Philippines

This is Typhoon Utor, which affected the Philippines and China in 2013. It caused considerable damage and loss of life. Climate change influences most weather events, including tropical storms and hurricanes. © NASA Goddard Space Flight Center via Flickr ( CC BY 2.0 )

Causes of climate change

The main driver of current climate change is the emission of greenhouse gases, most importantly carbon dioxide and methane . These are primarily released when fossil fuels are burnt. Meat and dairy production, producing cement and some industrial processes, such as the production and use of fertilisers, also emit greenhouse gases.

Greenhouse gases trap heat in our atmosphere. Since the mid-nineteenth century , the world has emitted over 2.2 trillion tonnes of carbon dioxide.

Joeri explains, 'Energy from the Sun falls on our planet and normally gets reflected back as infrared radiation. But instead of escaping back out into space, this radiation gets absorbed by molecules of greenhouse gases, which then emit them in all directions.'

This process causes more heat to be kept near Earth's surface, warming our world.

How do we know climate is changing?

There are measuring stations all around the world that keep track of air and sea temperature. From these measurements it's clear that temperatures are rising.

'There are many more indicators that tell us that the Earth is warming. For example, on a warming planet we would expect polar ice caps and glaciers to melt. It is clearly observed that those are melting,' explains Joeri.

An iceberg in McMurdo Sound

This image of an iceberg in McMurdo Sound was captured in 2017 as part of NASA's Operation IceBridge. This is an ongoing airborne mission to monitor changes in polar ice. © NASA Goddard Space Flight Center via Flickr ( CC BY 2.0 )

We know that greenhouse gases are causing change. Thanks to studies that look at how carbon dioxide absorbs infrared radiation, for example, there is a scientific understanding of how the planet would warm as a result of emissions. This has allowed climate scientists to discount the theory that global warming is being caused by an increase in the Sun's intensity, for example.

It's also known that greenhouse gases are primarily emitted by fossil fuel combustion.

'To burn carbon and produce carbon dioxide, you need oxygen. The amount of oxygen that is in the atmosphere is reducing at exactly the right amount for the increase in carbon dioxide to be caused by combusting fossil fuels,' explains Joeri.

There is additional evidence in the ratios of different types of carbon. Fossil fuels are, essentially, ancient plants . Plants now and in the past preferentially take up carbon-12. In normal conditions, the ratio between carbon-12 and carbon-13 is constant.

'What we can see is that the ratio of carbon-13 in our atmosphere is going down at exactly the rate you would predict if the carbon dioxide increase was due to burning fossil fuels.'

Two firefighters try to control a bush fire in New South Wales, Australia

Scientists predict that climate change will cause extreme weather events such as wildfires, floods and hurricanes to become worse ©  Quarrie Photography via Flickr ( CC BY-NC-ND 2.0 )

Effects of climate change

Climate change does not have the same effects everywhere. The planet is generally getting hotter, but some regions and seasons can at times be temporarily cooler. Some places will see drawn-out seasons, while others may experience concentrated bursts of extreme weather.

Extreme weather events - such as hurricanes, floods, heatwaves , drought and  wildfires  - are predicted to become more intense and frequent.

'Pretty much any weather event is influenced by climate change. As scientists we can estimate how much climate change has made a certain event more likely or more intense than it would have been without climate change,' explains Joeri.

When the world warms, ice melts. Arctic sea ice could disappear entirely in a warming world, and Greenland and Antarctica's ice sheets could be destabilised. This would result in large sections melting, which would add more liquid to the ocean. 

One of the San Blas Islands. It is covered by several palm trees and a small wooden house.

Sea level rise caused by climate change is a threat to low lying islands such as Panama's idyllic San Blas Islands, 49 of which are inhabited © Marc Veraart via Flickr ( CC BY-ND 2.0 )

Ice also reflects the Sun's energy, so without ice, more heat is absorbed by the ocean . Water expands as it warms - this is known as thermal expansion. This effect means that the ocean takes up more space, causing sea levels to rise. Even with rapid emission cuts, sea levels are expected to rise by around 26 to 53 centimetres by 2100.

Along with melting ice sheets and glaciers, rising global temperatures could cause rainforests to die and widespread species extinctions.

The effects of climate change on us

How climate change will affect you depends on who you are and where you live.

Around 190 million people currently live in areas that, due to rising sea levels, are expected to be under high tide levels by 2100. This could cause a massive displacement of populations. Low lying atoll nations such as Tuvalu and the Maldives are incredibly vulnerable to this change and could be lost to the sea.

Hundreds of millions of people rely on seafood as their main source of protein. Warming and more acidic waters could destroy marine food chains by affecting their base, such as krill or coral reefs .

Longer-lasting drought could devastate crops, threating food security. Reservoirs drying up , as well as the loss of glaciers, could make drinking water scarce. 

A sign marks where the Pasterze Glacier reached in 1995, with the receded glacier now far behind it

Pasterze Glacier is estimated to be receding at a rate of 10 metres per year. A sign shows where the glacier lay in 1995, with the ice having since dramatically retreated up the valley. ©  H Raab via Flickr ( CC BY-NC-ND 2.0 )

Increased precipitation can cause deadly flooding, as well as lowering indoor air quality. This could affect our health as dampness benefits moulds and fungi.

Around four billion people live in urban areas, and by 2050 this will have risen to an estimated 6.7 billion.

City dwellers are not exempt from climate change's effects. Urban populations usually rely on rural areas for inputs such as food and water. If climate change disrupts these important connections, it could heavily affect those in urban areas.

Natural disasters impact poor and vulnerable populations disproportionately hard and clearly expose the consequences of ignoring social inequalities . With extreme weather increasing, these populations face a heightened level of risk.

For example, the urban heat island effect amplifies the effects of temperature extremes in cities. Those unable to afford to buy and run air conditioning may find their health compromised.

The hazards of climate change also do  disproportionate harm to women and girls .

Joeri says, 'We don't know what will happen when, exactly. It's really hard to anticipate, particularly for populations that are already on the edge every year.'

People are also seeing climate change impact their mental health, experiencing a phenomenon known as eco-anxiety . 

A woman carries a young child through a deeply flooded street

Differences in wealth, ethnicity and health are just some of the inequalities that could determine a person's vulnerability to the effects of climate change © Kompas/Hendra A Setyawan via World Meteorological Organization Flickr ( CC BY-NC-ND 2.0 )

How does climate change affect biodiversity?

The natural world is delicately balanced . No species - including ours - is completely independent of all others. A 2019 report confirmed that over one million animal and plant species are now at risk of extinction as a result of human activities.

In the UK, an analysis of over 700 species has shown that more than 80% of trends between 1976 and 2005 indicate seasonal events are happening earlier. Differing rates of change could mean that species' lives are no longer synchronised with those they rely on.

Many plants are flowering earlier. Migrating birds arrive earlier, leave later and some even are getting smaller . Butterflies are emerging earlier . Birds and amphibians are laying their eggs earlier in the year. Some species are moving into new areas, such as kelps which form vital marine habitats.

A display of seaweed specimens at the Museum

Seaweeds are important for many reasons . They act as vital habitats. Some also help protect coastlines from erosion.

Insects are one of the most vulnerable groups, with less ability than mammals or birds to escape warmer temperatures. Loss of insects, which are a primary food source for many animals, a key pollinator of plants and whose numbers are already plummeting , could cause the ecosystem to collapse.

In aquatic ecosystems, activities to mitigate the side effects of climate change, such as building hard flood defences, can have negative effects. As sea levels rise, sea walls reduce the space for intertidal ecosystems. A rising sea could also damage important coastal habitats like sand dunes and cliffs.

Joeri says, 'The ocean looks homogenous, but it also experiences variations. There are ocean heatwaves, where if a particularly warm mass of water comes to an area like coral reefs, it induces loss and mass dieback.'

The loss of Arctic sea ice takes away a key habitat from animals including polar bears, seals and walruses. The ice is now declining at a rate of more than 12% per decade .

Climate change is just one of the stressors currently impacting nature. Sea use, invasive species, pollution and the exploitation of organisms are all factors in the threat to nature. Without drastic changes , it's expected that there will be devastating changes in biodiversity and ecosystems.

Find out more about the link between climate change and the biodiversity crisis . 

Two polar bears in a snowy area

A warming planet and melting ice threatens the survival of iconic animals such as polar bears © Gary Kramer/USFWS via U.S. Fish and Wildlife Service Flick r ( CC BY 2.0 )

Is there any hope for the future?

Climate change has been a known problem for around 30 years. Starting to fix it earlier might have made this daunting task much easier.

Joeri says, 'We definitely know how to reduce emissions to a significant degree. We are seeing more impacts of climate change, but we can also see a heightened interest and concern in the general public.

'Ultimately, reducing emissions is really an issue of public and political will.'

Scientists taking samples from patches of ice

By understanding more about the planet, such as by studying the poles, scientists are able to estimate the consequences climate change will have © NASA Goddard Space Flight Center via Flickr ( CC BY 2.0 )

Over the past decades, scientists have estimated the potential impacts of the planet's average temperature rising by different amounts.

'Based on that information, governments have come together and decided that they don't want to exceed a 2°C rise. They want to be well below that and pursue efforts to make it as close as possible to 1.5 °C.'

The difference in outcomes between 1.5 and 2°C are considerable. The impacts are the difference of 70% or 99% of coral reefs dying or a summer free of Arctic sea ice once every 100 or 10 years.

Scientists have determined how much carbon dioxide can still be emitted before this temperature rise limit will be exceeded. This is called the carbon budget and it's relatively small.

Joeri says, 'It's currently 420 to 580 billion tonnes of carbon dioxide for having a two-in-three or a one-in-two chance of limiting warming to 1.5°C, starting to count in 2018.

'Today we are roughly emitting 42 billion tonnes a year. So, if you start today and are going to net-zero emissions , if you want a one-in-two chance, we should there by around mid-century.

'These numbers define the geophysical requirement. Scientists then use engineering and economic models to understand how we can transform society to stay within that emission limit.'

Dairy cows on a farm

There are many ways that you can help the planet . One way is by reducing the amount of meat and dairy you eat. © Theo Stikkelman via Flickr ( CC BY 2.0 )

This transformation could include changes such as increasing the share of energy produced by renewables , changing the way food is produced , changing our diets to have a lower carbon footprint and changing the way we build houses and design cities .

Moving to net-zero emissions will not be a perfectly co-ordinated transition . It will take some countries to lead and show the world that moving to this new way of living and functioning is both possible and beneficial for other sustainability objectives, such as public health and food security.

But on whether we'll ever see a change for the better, Joeri says he's hopeful.

'Preferably we would have started 25 or 30 years ago, but I will take any year at which we start declining steadily towards net-zero.'

  • Climate change
  • Biodiversity

what is climate change in essay

Protecting our planet

We're working towards a future where both people and the planet thrive.

Hear from scientists studying human impact and change in the natural world.

what is climate change in essay

Do your bit for nature

Small actions can make a big difference.

Here's how you can help protect biodiversity.

what is climate change in essay

Eco-anxiety: how to cope at a time of climate crisis

Do you ever feel overwhelmed by the climate crisis or the state of our planet? These techniques can help you improve your mental wellbeing.

what is climate change in essay

Nine ways Museum scientists are fighting the planetary emergency

Discover how we're fighting to keep nature healthy.

what is climate change in essay

How are climate change and biodiversity loss linked?

The climate crisis and biodiversity loss are closely connected but the good news is, so are the solutions.

what is climate change in essay

Would you eat lab-grown meat?

Would you eat a steak grown by scientists?

Don't miss a thing

Receive email updates about our news, science, exhibitions, events, products, services and fundraising activities. We may occasionally include third-party content from our corporate partners and other museums. We will not share your personal details with these third parties. You must be over the age of 13. Privacy notice .

Follow us on social media

The Royal Society

The Basics of Climate Change

Greenhouse gases affect Earth’s energy balance and climate

The Sun serves as the primary energy source for Earth’s climate. Some of the incoming sunlight is reflected directly back into space, especially by bright surfaces such as ice and clouds, and the rest is absorbed by the surface and the atmosphere. Much of this absorbed solar energy is re-emitted as heat (longwave or infrared radiation). The atmosphere in turn absorbs and re-radiates heat, some of which escapes to space. Any disturbance to this balance of incoming and outgoing energy will affect the climate. For example, small changes in the output of energy from the Sun will affect this balance directly.

If all heat energy emitted from the surface passed through the atmosphere directly into space, Earth’s average surface temperature would be tens of degrees colder than today. Greenhouse gases in the atmosphere, including water vapour, carbon dioxide, methane, and nitrous oxide, act to make the surface much warmer than this because they absorb and emit heat energy in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm [Figure B1]. Without this greenhouse effect, life as we know it could not have evolved on our planet. Adding more greenhouse gases to the atmosphere makes it even more effective at preventing heat from escaping into space. When the energy leaving is less than the energy entering, Earth warms until a new balance is established.

Greenhouse gases emitted by human activities alter Earth’s energy balance and thus its climate. Humans also affect climate by changing the nature of the land surfaces (for example by clearing forests for farming) and through the emission of pollutants that affect the amount and type of particles in the atmosphere.

Scientists have determined that, when all human and natural factors are considered, Earth’s climate balance has been altered towards warming, with the biggest contributor being increases in CO 2 .

what is climate change in essay

Figure b1. Greenhouse gases in the atmosphere, including water vapour, carbon dioxide, methane, and nitrous oxide, absorb heat energy and emit it in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm. Adding more greenhouse gases to the atmosphere enhances the effect, making Earth’s surface and lower atmosphere even warmer. Image based on a figure from US EPA.

Human activities have added greenhouse gases to the atmosphere

The atmospheric concentrations of carbon dioxide, methane, and nitrous oxide have increased significantly since the Industrial Revolution began. In the case of carbon dioxide, the average concentration measured at the Mauna Loa Observatory in Hawaii has risen from 316 parts per million (ppm) in 1959 (the first full year of data available) to more than 411 ppm in 2019 [Figure B2]. The same rates of increase have since been recorded at numerous other stations worldwide. Since preindustrial times, the atmospheric concentration of CO 2  has increased by over 40%, methane has increased by more than 150%, and nitrous oxide has increased by roughly 20%. More than half of the increase in CO 2  has occurred since 1970. Increases in all three gases contribute to warming of Earth, with the increase in CO 2  playing the largest role. See page B3 to learn about the sources of human emitted greenhouse gases.  Learn about the sources of human emitted greenhouse gases.

Scientists have examined greenhouse gases in the context of the past. Analysis of air trapped inside ice that has been accumulating over time in Antarctica shows that the CO 2  concentration began to increase significantly in the 19th century [Figure B3], after staying in the range of 260 to 280 ppm for the previous 10,000 years. Ice core records extending back 800,000 years show that during that time, CO 2  concentrations remained within the range of 170 to 300 ppm throughout many “ice age” cycles -  learn about the ice ages  -  and no concentration above 300 ppm is seen in ice core records until the past 200 years.

Measurements of the forms (isotopes) of carbon in the modern atmosphere show a clear fingerprint of the addition of “old” carbon (depleted in natural radioactive  14 C) coming from the combustion of fossil fuels (as opposed to “newer” carbon coming from living systems). In addition, it is known that human activities (excluding land use changes) currently emit an estimated 10 billion tonnes of carbon each year, mostly by burning fossil fuels, which is more than enough to explain the observed increase in concentration. These and other lines of evidence point conclusively to the fact that the elevated CO 2  concentration in our atmosphere is the result of human activities. 

what is climate change in essay

Fig b2. Measurements of atmospheric CO 2  since 1958 from the Mauna Loa Observatory in Hawaii (black) and from the South Pole (red) show a steady annual increase in atmospheric CO 2  concentration. The measurements are made at remote places like these because they are not greatly influenced by local processes, so therefore they are representative of the background atmosphere. The small up-and-down saw-tooth pattern reflects seasonal changes in the release and uptake of CO 2  by plants. Source: Scripps CO2 Program

what is climate change in essay

Figure b3. CO 2  variations during the past 1,000 years, obtained from analysis of air trapped in an ice core extracted from Antarctica (red squares), show a sharp rise in atmospheric CO 2  starting in the late 19th century. Modern atmospheric measurements from Mauna Loa are superimposed in gray. Source: figure by Eric Wolff, data from Etheridge et al., 1996; MacFarling Meure et al., 2006; Scripps CO 2  Program. 

Climate records show a warming trend

Estimating global average surface air temperature increase requires careful analysis of millions of measurements from around the world, including from land stations, ships, and satellites. Despite the many complications of synthesising such data, multiple independent teams have concluded separately and unanimously that global average surface air temperature has risen by about 1 °C (1.8 °F) since 1900 [Figure B4]. Although the record shows several pauses and accelerations in the increasing trend, each of the last four decades has been warmer than any other decade in the instrumental record since 1850.

Going further back in time before accurate thermometers were widely available, temperatures can be reconstructed using climate-sensitive indicators “proxies” in materials such as tree rings, ice cores, and marine sediments. Comparisons of the thermometer record with these proxy measurements suggest that the time since the early 1980s has been the warmest 40-year period in at least eight centuries, and that global temperature is rising towards peak temperatures last seen 5,000 to 10,000 years ago in the warmest part of our current interglacial period.

Many other impacts associated with the warming trend have become evident in recent years. Arctic summer sea ice cover has shrunk dramatically. The heat content of the ocean has increased. Global average sea level has risen by approximately 16 cm (6 inches) since 1901, due both to the expansion of warmer ocean water and to the addition of melt waters from glaciers and ice sheets on land. Warming and precipitation changes are altering the geographical ranges of many plant and animal species and the timing of their life cycles. In addition to the effects on climate, some of the excess CO 2  in the atmosphere is being taken up by the ocean, changing its chemical composition (causing ocean acidification).

what is climate change in essay

Figure b4. Earth’s global average surface temperature has risen, as shown in this plot of combined land and ocean measurements from 1850 to 2019 derived from three independent analyses of the available data sets. The top panel shows annual average values from the three analyses, and the bottom panel shows decadal average values, including the uncertainty range (grey bars) for the maroon (HadCRUT4) dataset. The temperature changes are relative to the global average surface temperature, averaged from 1961−1990. Source: Based on IPCC AR5, data from the HadCRUT4 dataset (black), NOAA Climate.gov; data from UK Met Office Hadley Centre (maroon), US National Aeronautics and Space Administration Goddard Institute for Space Studies (red), and US National Oceanic and Atmospheric Administration National Centers for Environmental Information (orange). 

Many complex processes shape our climate

Based just on the physics of the amount of energy that CO 2 absorbs and emits, a doubling of atmospheric CO 2 concentration from pre-industrial levels (up to about 560 ppm) would by itself cause a global average temperature increase of about 1 °C (1.8 °F). In the overall climate system, however, things are more complex; warming leads to further effects (feedbacks) that either amplify or diminish the initial warming.

The most important feedbacks involve various forms of water. A warmer atmosphere generally contains more water vapour. Water vapour is a potent greenhouse gas, thus causing more warming; its short lifetime in the atmosphere keeps its increase largely in step with warming. Thus, water vapour is treated as an amplifier, and not a driver, of climate change. Higher temperatures in the polar regions melt sea ice and reduce seasonal snow cover, exposing a darker ocean and land surface that can absorb more heat, causing further warming. Another important but uncertain feedback concerns changes in clouds. Warming and increases in water vapour together may cause cloud cover to increase or decrease which can either amplify or dampen temperature change depending on the changes in the horizontal extent, altitude, and properties of clouds. The latest assessment of the science indicates that the overall net global effect of cloud changes is likely to be to amplify warming.

The ocean moderates climate change. The ocean is a huge heat reservoir, but it is difficult to heat its full depth because warm water tends to stay near the surface. The rate at which heat is transferred to the deep ocean is therefore slow; it varies from year to year and from decade to decade, and it helps to determine the pace of warming at the surface. Observations of the sub-surface ocean are limited prior to about 1970, but since then, warming of the upper 700 m (2,300 feet) is readily apparent, and deeper warming is also clearly observed since about 1990.

Surface temperatures and rainfall in most regions vary greatly from the global average because of geographical location, in particular latitude and continental position. Both the average values of temperature, rainfall, and their extremes (which generally have the largest impacts on natural systems and human infrastructure), are also strongly affected by local patterns of winds.

Estimating the effects of feedback processes, the pace of the warming, and regional climate change requires the use of mathematical models of the atmosphere, ocean, land, and ice (the cryosphere) built upon established laws of physics and the latest understanding of the physical, chemical and biological processes affecting climate, and run on powerful computers. Models vary in their projections of how much additional warming to expect (depending on the type of model and on assumptions used in simulating certain climate processes, particularly cloud formation and ocean mixing), but all such models agree that the overall net effect of feedbacks is to amplify warming.

Human activities are changing the climate

Rigorous analysis of all data and lines of evidence shows that most of the observed global warming over the past 50 years or so cannot be explained by natural causes and instead requires a significant role for the influence of human activities.

In order to discern the human influence on climate, scientists must consider many natural variations that affect temperature, precipitation, and other aspects of climate from local to global scale, on timescales from days to decades and longer. One natural variation is the El Niño Southern Oscillation (ENSO), an irregular alternation between warming and cooling (lasting about two to seven years) in the equatorial Pacific Ocean that causes significant year-to-year regional and global shifts in temperature and rainfall patterns. Volcanic eruptions also alter climate, in part increasing the amount of small (aerosol) particles in the stratosphere that reflect or absorb sunlight, leading to a short-term surface cooling lasting typically about two to three years. Over hundreds of thousands of years, slow, recurring variations in Earth’s orbit around the Sun, which alter the distribution of solar energy received by Earth, have been enough to trigger the ice age cycles of the past 800,000 years.

Fingerprinting is a powerful way of studying the causes of climate change. Different influences on climate lead to different patterns seen in climate records. This becomes obvious when scientists probe beyond changes in the average temperature of the planet and look more closely at geographical and temporal patterns of climate change. For example, an increase in the Sun’s energy output will lead to a very different pattern of temperature change (across Earth’s surface and vertically in the atmosphere) compared to that induced by an increase in CO 2 concentration. Observed atmospheric temperature changes show a fingerprint much closer to that of a long-term CO 2 increase than to that of a fluctuating Sun alone. Scientists routinely test whether purely natural changes in the Sun, volcanic activity, or internal climate variability could plausibly explain the patterns of change they have observed in many different aspects of the climate system. These analyses have shown that the observed climate changes of the past several decades cannot be explained just by natural factors.

How will climate change in the future?

Scientists have made major advances in the observations, theory, and modelling of Earth’s climate system, and these advances have enabled them to project future climate change with increasing confidence. Nevertheless, several major issues make it impossible to give precise estimates of how global or regional temperature trends will evolve decade by decade into the future. Firstly, we cannot predict how much CO 2  human activities will emit, as this depends on factors such as how the global economy develops and how society’s production and consumption of energy changes in the coming decades. Secondly, with current understanding of the complexities of how climate feedbacks operate, there is a range of possible outcomes, even for a particular scenario of CO 2  emissions. Finally, over timescales of a decade or so, natural variability can modulate the effects of an underlying trend in temperature. Taken together, all model projections indicate that Earth will continue to warm considerably more over the next few decades to centuries. If there were no technological or policy changes to reduce emission trends from their current trajectory, then further globally-averaged warming of 2.6 to 4.8 °C (4.7 to 8.6 °F) in addition to that which has already occurred would be expected during the 21st century [Figure B5]. Projecting what those ranges will mean for the climate experienced at any particular location is a challenging scientific problem, but estimates are continuing to improve as regional and local-scale models advance.

what is climate change in essay

Figure b5. The amount and rate of warming expected for the 21st century depends on the total amount of greenhouse gases that humankind emits. Models project the temperature increase for a business-as-usual emissions scenario (in red) and aggressive emission reductions, falling close to zero 50 years from now (in blue). Black is the modelled estimate of past warming. Each solid line represents the average of different model runs using the same emissions scenario, and the shaded areas provide a measure of the spread (one standard deviation) between the temperature changes projected by the different models. All data are relative to a reference period (set to zero) of 1986-2005. Source: Based on IPCC AR5

Climate change and biodiversity

Human activities are changing the climate. Science can help us understand what we are doing to habitats and the climate, but also find solutions.

Email updates

We promote excellence in science so that, together, we can benefit humanity and tackle the biggest challenges of our time.

Subscribe to our newsletters to be updated with the latest news on innovation, events, articles and reports.

What subscription are you interested in receiving? (Choose at least one subject)

NASA Logo

The Causes of Climate Change

Human activities are driving the global warming trend observed since the mid-20th century.

what is climate change in essay

  • The greenhouse effect is essential to life on Earth, but human-made emissions in the atmosphere are trapping and slowing heat loss to space.
  • Five key greenhouse gases are carbon dioxide, nitrous oxide, methane, chlorofluorocarbons, and water vapor.
  • While the Sun has played a role in past climate changes, the evidence shows the current warming cannot be explained by the Sun.

Increasing Greenhouses Gases Are Warming the Planet

Scientists attribute the global warming trend observed since the mid-20 th century to the human expansion of the "greenhouse effect" 1 — warming that results when the atmosphere traps heat radiating from Earth toward space.

Life on Earth depends on energy coming from the Sun. About half the light energy reaching Earth's atmosphere passes through the air and clouds to the surface, where it is absorbed and radiated in the form of infrared heat. About 90% of this heat is then absorbed by greenhouse gases and re-radiated, slowing heat loss to space.

Four Major Gases That Contribute to the Greenhouse Effect

Carbon dioxide.

A vital component of the atmosphere, carbon dioxide (CO 2 ) is released through natural processes (like volcanic eruptions) and through human activities, such as burning fossil fuels and deforestation.

Like many atmospheric gases, methane comes from both natural and human-caused sources. Methane comes from plant-matter breakdown in wetlands and is also released from landfills and rice farming. Livestock animals emit methane from their digestion and manure. Leaks from fossil fuel production and transportation are another major source of methane, and natural gas is 70% to 90% methane.

Nitrous Oxide

A potent greenhouse gas produced by farming practices, nitrous oxide is released during commercial and organic fertilizer production and use. Nitrous oxide also comes from burning fossil fuels and burning vegetation and has increased by 18% in the last 100 years.

Chlorofluorocarbons (CFCs)

These chemical compounds do not exist in nature – they are entirely of industrial origin. They were used as refrigerants, solvents (a substance that dissolves others), and spray can propellants.

FORCING:  Something acting upon Earth's climate that causes a change in how energy flows through it (such as long-lasting, heat-trapping gases - also known as greenhouse gases). These gases slow outgoing heat in the atmosphere and cause the planet to warm.

what is climate change in essay

Another Gas That Contributes to the Greenhouse Effect:

Water vapor.

Water vapor is the most abundant greenhouse gas, but because the warming ocean increases the amount of it in our atmosphere, it is not a direct cause of climate change. Credit:  John Fowler  on  Unsplash

FEEDBACKS:  A process where something is either amplified or reduced as time goes on, such as water vapor increasing as Earth warms leading to even more warming.

Photo of monsoon over Mexico.

Human Activity Is the Cause of Increased Greenhouse Gas Concentrations

Over the last century, burning of fossil fuels like coal and oil has increased the concentration of atmospheric carbon dioxide (CO 2 ). This increase happens because the coal or oil burning process combines carbon with oxygen in the air to make CO 2 . To a lesser extent, clearing of land for agriculture, industry, and other human activities has increased concentrations of greenhouse gases.

The industrial activities that our modern civilization depends upon have raised atmospheric carbon dioxide levels by nearly 50% since 1750 2 . This increase is due to human activities, because scientists can see a distinctive isotopic fingerprint in the atmosphere.

In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change, composed of scientific experts from countries all over the world, concluded that it is unequivocal that the increase of CO 2 , methane, and nitrous oxide in the atmosphere over the industrial era is the result of human activities and that human influence is the principal driver of many changes observed across the atmosphere, ocean, cryosphere and biosphere.

"Since systematic scientific assessments began in the 1970s, the influence of human activity on the warming of the climate system has evolved from theory to established fact."

what is climate change in essay

Intergovernmental Panel on Climate Change

The panel's AR6 Working Group I (WGI) Summary for Policymakers report is online at https://www.ipcc.ch/report/ar6/wg1/ .

Evidence Shows That Current Global Warming Cannot Be Explained by Solar Irradiance

Scientists use a metric called Total Solar Irradiance (TSI) to measure the changes in energy the Earth receives from the Sun. TSI incorporates the 11-year solar cycle and solar flares/storms from the Sun's surface.

Studies show that solar variability has played a role in past climate changes. For example, a decrease in solar activity coupled with increased volcanic activity helped trigger the Little Ice Age.

temperature vs solar activity updated July 2020

But several lines of evidence show that current global warming cannot be explained by changes in energy from the Sun:

  • Since 1750, the average amount of energy from the Sun either remained constant or decreased slightly 3 .
  • If a more active Sun caused the warming, scientists would expect warmer temperatures in all layers of the atmosphere. Instead, they have observed a cooling in the upper atmosphere and a warming at the surface and lower parts of the atmosphere. That's because greenhouse gases are slowing heat loss from the lower atmosphere.
  • Climate models that include solar irradiance changes can’t reproduce the observed temperature trend over the past century or more without including a rise in greenhouse gases.

1. IPCC 6 th Assessment Report, WG1, Summary for Policy Makers, Sections A, “ The Current State of the Climate ”

IPCC 6 th Assessment Report, WG1, Technical Summary, Sections TS.1.2, TS.2.1 and TS.3.1

2. P. Friedlingstein, et al., 2022: “Global Carbon Budget 2022”, Earth System Science Data ( 11 Nov 2022): 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

3. IPCC 6 th Assessment Report, WG1, Chapter 2, Section 2.2.1, “ Solar and Orbital Forcing ” IPCC 6 th Assessment Report, WG1, Chapter 7, Sections 7.3.4.4, 7.3.5.2, Figure 7.6, “ Solar ” M. Lockwood and W.T. Ball, Placing limits on long-term variations in quiet-Sun irradiance and their contribution to total solar irradiance and solar radiative forcing of climate,” Proceedings of the Royal Society A , 476, issue 2228 (24 June 2020): https://doi 10.1098/rspa.2020.0077

Header image credit: Pixabay/stevepb Four Major Gases image credit: Adobe Stock/Ilya Glovatskiy

Discover More Topics From NASA

Explore Earth Science

what is climate change in essay

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

what is climate change in essay

  • Share full article

You Asked, We Answered: Some Burning Climate Questions

Reporters from the Climate Desk gathered reader questions and are here to help explain some frequent puzzlers.

what is climate change in essay

What’s one thing you want to know about climate change? We asked, and hundreds of you responded.

The topic, like the planet, is vast. Overwhelming. Complex. But there’s no more important time to understand what is happening and what can be done about it.

Why are extreme cold weather events happening if the planet is warming?

I understand that scientists believe that some extreme cold weather events are due to climate change, but I don’t quite understand how, especially if Earth is getting warmer overall. Could you explain this? — Gabriel Gutierrez, West Lafayette, Ind.

By Maggie Astor

The connection between climate change and extreme cold weather involves the polar jet stream in the Northern Hemisphere, strong winds that blow around the globe from west to east at an altitude of 5 to 9 miles. The jet stream naturally shifts north and south, and when it shifts south, it brings frigid Arctic air with it.

A separate wind system, called the polar vortex , forms a ring around the North Pole. When the vortex is temporarily disrupted — sometimes stretched or elongated, and other times broken into pieces — the jet stream tends to take one of those southward shifts. And research “suggests these disruptions to the vortex are happening more often in connection with a rapidly warming, melting Arctic, which we know is a clear symptom of climate change,” said Jennifer A. Francis, a senior scientist at the Woodwell Climate Research Center.

In other words, as climate change makes the Arctic warmer, the polar vortex is being more frequently disrupted in ways that allow Arctic air to escape south. And while temperatures are increasing on average, Arctic air is still frigid much of the time. Certainly frigid enough to cause extreme cold snaps in places like, say, Texas that are not accustomed to or prepared for them.

Where the extreme cold occurs depends on the nature of the disruption to the polar vortex. One type of disruption brings Arctic air into Europe and Asia. Another type brings Arctic air into the United States, and “that’s the type of polar vortex disruption that’s increasing the fastest,” said Judah L. Cohen, the director of seasonal forecasting at Atmospheric and Environmental Research, a private organization that works with government agencies.

It is important to note that these atmospheric patterns are extremely complicated, and while studies have shown a clear correlation between the climate-change-fueled warming of the Arctic and these extreme cold events, there is some disagreement among scientists about whether the warming of the Arctic is directly causing the extreme cold events. Research on that question is ongoing.

How will climate change affect biodiversity?

What impact will climate change have on biodiversity? How are they interlinked? How do the roles of developing versus developed countries differ, for example the United States and India? — A reader in India

By Catrin Einhorn

Warmer oceans are killing corals . Rising sea levels threaten the beaches that sea turtles need for nesting, and hotter temperatures are causing more females to be born. Changing seasons are increasingly out of step with the conditions species have evolved to depend on.

And then there are the polar bears , long a symbol of what could be lost in a warming world.

Climate change is already affecting plants and animals in ways that scientists are racing to understand. One study predicted sudden die offs , with large segments of ecosystems collapsing in waves. This has already started in coral reefs, scientists say, and could start in tropical forests by the 2040s.

Keeping global warming under 2 degrees Celsius, or 3.6 degrees Fahrenheit, the upper limit outlined by the Paris Agreement, would reduce the number of species exposed to dangerous climate change by 60 percent, the study found.

Despite these grim predictions, climate change isn’t yet the biggest driver of biodiversity loss. On land, the largest factor is the ways in which people have reshaped the terrain itself, creating farms and ranches, towns and cities, roads and mines from what was once habitat for myriad species. At sea, the main cause of biodiversity loss is overfishing. Also at play: pollution, introduced species that outcompete native ones, and hunting. A sobering report in 2019 by the leading international authority on biodiversity found that around a million species were at risk of extinction, many within decades.

While climate change will increasingly drive species loss, that’s not the only way in which the two are interlinked. Last year the same biodiversity panel joined with its climate change counterpart to issue a paper declaring that neither crisis could be addressed effectively on its own. For example, intact ecosystems like peatlands and forests both nurture biodiversity and sequester carbon; destroy them, and they turn into emitters of greenhouse gasses as well as lost habitat.

What to do? The science is clear that the world must transition away from fossil fuels far more quickly than is happening. Deforestation must stop . Consuming less meat and dairy would free up farmland for restoration , providing habitat for species and stashing away carbon. Ultimately, many experts say, we need a transformation from an extraction-based economy to a circular one. Like nature’s cycle, our waste — old clothes, old smartphones, old furniture — must be designed to provide the building blocks of what comes next.

Countries around the world are working on a new United Nations biodiversity agreement , which is expected to be approved later this year. One sticking point: How much money wealthy countries are willing to give poorer ones to protect intact natural areas, since wealthy countries have already largely exploited theirs.

Advertisement

What’s the status of U.S. climate legislation and emissions?

Where is the trimmed back version of climate legislation at? Joe Manchin reportedly said he would support such a bill. What do you know about the bill and will it pass with just Democrats? — Richard Buttny, Virgil, N.Y.

What is the current stated U.S. goal regarding reducing greenhouse gases and climate change, and how likely is it that we will achieve that goal? What do we need to do today to make progress toward achieving that goal? — Kathy Gray, Oak Ridge, Tenn.

By Lisa Friedman

Richard, as to the last part of your question, honestly, at this point your guess is as good as ours.

But here is what we know so far. Senator Joe Manchin III, Democrat of West Virginia, the most powerful man in Congress because his support in an evenly divided Senate is key, effectively killed President Biden’s Build Back Better climate and social spending legislation when he ended months of negotiations last year, saying he could not support the package .

A few weeks ago amid talks of revived discussions, Mr. Manchin was blunt. “There is no Build Back Better legislation,” he told reporters. Mr. Manchin also has not committed to passing a smaller version of the original $1 trillion spending plan. He has, however, voiced support for an “all of the above” energy package that increases oil and gas development.

Democrats hope that billions of dollars in tax incentives for wind, solar, geothermal and electric vehicle charging stations can also make its way into such a package. But relations between the White House and Mr. Manchin are rocky and it is unclear whether such a bill could pass before lawmakers leave town for an August recess.

To your emissions question, Kathy, Mr. Biden has pledged to cut United States emissions 50 to 52 percent below 2005 levels by 2030 . Energy experts say it is a challenging but realistic goal, and critical for helping the world avert the worst impacts of climate change.

It’s not going to be easy. So far there are few regulations and even fewer laws that can help achieve that target. Mr. Biden’s centerpiece legislation, the Build Back Better Act, includes $550 billion in clean energy tax incentives that researchers said could get the country about halfway to its goal. But, as noted, that bill is stalled in the Senate . Even if it manages to win approval this year, the administration will still have to enact regulations on things like power plants and automobile emissions to meet the target.

Will our drinking water be safe?

A lot of coverage on climate change deals with rising sea levels and extreme weather — droughts, floods, etc. My question is more about how climate change will affect drinking water and access to safe clean water. Are we in danger within our current lifetime to see an impact to safe water within the U.S. due to climate change? — Jessica, Silver Spring, Md.

By Christopher Flavelle

Climate change threatens Americans’ access to clean drinking water in a number of ways. The most obvious is drought: Rising temperatures are reducing the snowpack that supplies drinking water for much of the West.

But drought is far from the only climate-related threat to America’s water. Along the coast, cities like Miami that draw drinking water from underground aquifers have to worry about rising seas pushing saltwater into those aquifers , a process called saltwater intrusion. And rising seas also push up groundwater levels, which can cause septic systems to stop working, pushing unfiltered human waste into that groundwater.

Even in cities far from the coast, worsening floods are overwhelming aging sewer systems , causing untreated storm water and sewage to reach rivers and streams more frequently . And some 2,500 chemical sites are in areas at risk of flooding, which could cause those chemicals to leach into the groundwater.

In some cases, protecting drinking water from the effects of climate change is possible, so long as governments can find enough money to upgrade infrastructure — building new systems to contain storm water, for example, or better protect chemicals from being released during a flood.

Far harder will be finding new supplies of water to make up for what’s lost as temperatures rise. Some communities are responding by pumping more water from the ground. But if those aquifers are depleted faster than rainwater can replenish them, they will eventually run dry, a concern with the Ogallala Aquifer that supports much of the High Plains.

Even with significant reductions in water use, climate change could reduce the number of people that some regions can support, and leave more areas dependent on importing water.

Can you solve drought by piping water across the country?

Why don’t we create a national acequia system to capture excess rain falling primarily in the Eastern United States and pipeline it to the drought in the West? — Carol P. Chamberland, Albuquerque, N.M

The idea of taking water from one community and giving it to another has some basis in American history. In 1913, Los Angeles opened an aqueduct to carry water from Owens Valley, 230 miles north of the city, to sustain its growth.

But the project, in addition to costing some $23 million at the time, greatly upset Owens Valley residents, who so resented losing their water that they took to dynamiting the aqueduct. Repeatedly .

Today, there are some enormous water projects in the United States, though building a pipeline that spanned a significant stretch of the country would be astronomically more difficult. The distance between Albuquerque, for example, and the Mississippi River — perhaps the closest hypothetical starting point for such a pipeline — is about 1,000 miles, crossing at least three states along the way. Moving that water all the way to Los Angeles would mean piping it at least 1,800 miles across five states.

So the engineering and permitting challenges alone would be daunting. And that’s assuming the local and state governments that would have to give up their water would be willing to do so.

China dealt with similar challenges to build a colossal network of waterways that is transferring water from the country’s humid south to its dry north. But of course, China’s system of government makes engineering feats of that scale somewhat more feasible to pull off.

For the United States, it would be easier to just build a series of desalination plants along the West coast, according to Greg Pierce, director of the Human Right to Water Solutions Lab at the University of California, Los Angeles. And before turning to desalination, which is itself energy-intensive and thus expensive, communities in the West should work harder at other steps, such as water conservation and recycling, he said.

“It’s not worth it,” Dr. Pierce said of the pipeline idea. “You’d have to exhaust eight other options first.”

Is the weather becoming more extreme than scientists predicted?

How can we have faith in climate modeling when extreme events are much worse than predicted? Given “unexpected” extreme events like the 2021 Pacific Northwest heat wave and extreme heat in Antarctica that appear to shock scientists, it’s difficult for me to trust the I.P.C.C.’s framing that we haven’t run out of time. — Kevin, Herndon, Va.

By Raymond Zhong

Climate scientists have said for a long time that global warming is causing the intensity and frequency of many types of extreme weather to increase. And that’s exactly what has been happening. But global climate models aren’t really designed to simulate extreme events in individual regions. The factors that shape individual heat waves, for instance, are very local. Large-scale computer models simply can’t handle that level of detail quite yet.

That said, sometimes there are events that seem so anomalous that they make scientists wonder if they reflect something totally new and unforeseen, a gap in our understanding of the climate. Some researchers put the 2021 Pacific Northwest heat wave in that category, and are working to figure out whether they need to re-evaluate some of their assumptions.

For its part, the I.P.C.C. has hardly failed to acknowledge what’s happening with extreme weather. But its mandate is to assess the whole range of climate research, which might make it lean toward the middle of the road in its summaries. A decade ago, when a group of researchers looked back at the panel’s assessments from the early 2000s, they found that it generally underestimated the actual changes in sea level rise, increases in surface temperatures, intensity of rainfall and more. They blamed the instinct of scientists to avoid making conclusions that seem “excessively dramatic,” perhaps out of fear of being called alarmist.

The panel’s latest report, from April , concluded that we haven’t run out of time to slow global warming, but only if nations and societies make some huge changes right away. That’s a big if.

How can I hear from climate scientists themselves?

Why are climate change scientists faceless, aloof, terrible communicators and absent from social media? — A reader in Dallas

Climate science may not yet have its Bill Nye or its Neil deGrasse Tyson, but plenty of climate scientists are passionate about communicating their work to the public. Lots of them are on Twitter. Here’s a (very small) cross-section of people to follow, in alphabetical order:

Alaa Al Khourdajie : Senior scientist in London with the Intergovernmental Panel on Climate Change, the body of experts convened by the United Nations that puts out regular, authoritative surveys of climate research. Tweets on climate change economics and climate diplomacy.

Andrew Dessler : Professor of atmospheric sciences at Texas A&M University. Elucidator of energy and renewables, climate models and Texas.

Zeke Hausfather : Climate research lead at the payment processing company Stripe and scientist at Berkeley Earth, a nonprofit research group. A seemingly tireless chronicler, charter and commentator on all things climate.

David Ho : Climate scientist at the University of Hawaii at Manoa and École Normale Supérieure in Paris. Talks oceans and carbon dioxide removal, with wry observations on transit, cycling and life in France, too.

Twila Moon : Deputy lead scientist at the National Snow and Ice Data Center in Boulder, Colo. Covers glaciers, polar regions and giant ice sheets, and why we should all care about what happens to them.

Maisa Rojas : Climatologist at the University of Chile and Chile’s current environment minister. Follow along for slices of life at the intersection of science and government policy.

Sonia I. Seneviratne : Professor of land-climate dynamics at ETH Zurich in Switzerland. Tweets on extreme weather, greenhouse gas emissions and European energy policy.

Chandni Singh : Researcher on climate adaptation at the Indian Institute for Human Settlements in Bangalore. Posts about how countries and communities are coping with climate change, in both helpful ways and not so helpful ones.

Kim Wood : Geoscientist and meteorologist at Mississippi State University. A fount of neat weather maps and snarky GIFs.

What kind of trees are best to plant for the planet?

The world is trying to reforest the planet by planting nonnative trees like eucalyptus. Is this another disastrous plan? Shouldn’t they be planting native trees? — Katy Green, Nashville

Ecologists would say planting native trees is the best choice. We recently published an article on this very topic , examining how tree planting can resurrect or devastate ecosystems, depending on what species are planted and where.

To be sure, people need wood and other tree products for all kinds of reasons, and sometimes nonnative species make sense. But even when the professed goal is to help nature, the commercial benefits of certain trees, like Australian eucalyptus in Africa and South America or North American Sitka spruce in Europe, often win out.

A new standard is in development that would score tree planting projects on how well they’re doing with regard to biodiversity, with the aim of helping those with poor scores to improve.

The same ecological benefit of planting native species also holds true for people’s yards. Doug Tallamy, a professor of entomology at the University of Delaware, worked with the National Wildlife Federation to develop this tool to help people find native trees, shrubs and flowers that support the most caterpillars, which in turn feed baby birds .

Can we engineer solutions to atmospheric warming?

Why are we not investing in scalable solutions that can remove carbon or reduce solar radiation? — Hayes Morehouse, Hayward, Calif.

By Henry Fountain

As a group, these types of solutions are referred to as geoengineering, or intentional manipulation of the climate. Geoengineering generally falls into two categories: removing some of the carbon dioxide already in the atmosphere so Earth traps less heat, known as direct air capture, or reducing how much sunlight reaches Earth’s surface so that there is less heat to begin with, usually called solar radiation management.

There are a few companies developing direct air capture machines, and some have deployed them on a small scale. According to the International Energy Agency, these projects capture a total of about 10 thousand tons of CO2 a year, a tiny fraction of the roughly 35 billion tons of annual energy-related emissions. Removing enough CO2 to have a climate impact would take a long time and require many thousands of machines, all of which would need energy to operate.

The captured gas would also have to be securely stored to keep it from re-entering the atmosphere. Those hurdles make direct air capture a long shot, especially since, for now at least, there are few financial incentives to overcome them. No one wants to pay to remove carbon dioxide from the air and bury it underground.

Solar radiation management is a different story. The basics of how to do it are known: inject some kind of chemical (perhaps sulfur dioxide) into the upper atmosphere, where it would reflect more of the sun’s rays. Relatively speaking, it wouldn’t be all that expensive (a fleet of high-flying planes would probably suffice) although once started it would have to continue indefinitely.

The major hurdle to developing the technology has been grave concern among many scientists, policymakers and others about unintended consequences that might result, and about the lack of a structure to govern its deployment. To date, there have been almost no real-world studies of the technology .

How do we know how warm the planet was in the 1800s?

One key finding of climate science is that global temperatures have increased by 2 degrees Fahrenheit since the late 1800s. How can we possibly have reliable measures of global temperatures from back then, keeping in mind that oceans cover about 70 percent of the globe and that a large majority of land has never been populated by humans to any significant degree? — Robert, Madison, Wis.

The mercury thermometer was invented in the early 1700s, and by the mid- to late 19th century, local temperatures were being monitored continuously in many locations, predominantly in the United States, Europe and the British colonies. By 1900, there were hundreds of recording stations worldwide, but over half of the Southern Hemisphere still wasn’t covered. And the techniques could be primitive. To measure temperatures at the sea’s surface, for instance, the most common method before about 1940 was to toss a bucket overboard a ship, haul it back up with a rope and read the temperature of the water inside.

To turn these spotty local measurements into estimates of average temperatures globally, across both land and ocean, climate scientists have had to perform some highly delicate analysis . They’ve used statistical models to fill in the gaps in direct readings. They’ve taken into account when weather stations changed locations or were situated close to cities that were hot for reasons unrelated to larger temperature trends.

They have also used some clever techniques to try to correct for antiquated equipment and methods. Those bucket readings , for example, might be inaccurate because the water in the bucket cooled down as it was pulled aboard. So scientists have scoured various nations’ maritime archives to determine what materials their sailors’ buckets were made of — tin, wood, canvas, rubber — during different periods in history and adjusted the way they incorporate those temperature recordings into their computations.

Such analysis is fiendishly tricky. The numbers that emerge are uncertain estimates, not gospel truth. Scientists are working constantly to refine them. Today’s global temperature measurements are based on a much broader and more quality-controlled set of readings, including from ships and buoys in the oceans.

But having a historical baseline, even an imperfect one, is important. As Roy L. Jenne, a researcher at the National Center for Atmospheric Research, wrote in a 1975 report on the institution’s collections of climate data: “Although they are not perfect, if they are used wisely they can help us find answers to a number of problems.”

Does producing batteries for electric cars damage the environment more than gas vehicles do?

Is the environmental damage collecting metals/producing batteries for electric cars more dangerous to the environment than gas powered vehicles? — Sandy Rogers, San Antonio, Texas

By Hiroko Tabuchi

There’s no question that mining the metals and minerals used in electric car batteries comes with sizable costs that are not just environmental but also human.

Much of the world’s cobalt, for example, is mined in the Democratic Republic of Congo , where corruption and worker exploitation has been widespread. Extracting the metals from their ores also requires a process called smelting, which can emit sulfur oxide and other harmful air pollution.

Beyond the minerals required for batteries, electric grids still need to become much cleaner before electric vehicles are emissions free.

Most electric vehicles sold today already produce significantly fewer planet-warming emissions than most cars fueled with gasoline, but a lot still depends on how much coal is being burned to generate the electricity they use.

Still, consider that batteries and other clean technology require relatively tiny amounts of these critical minerals, and that’s only to manufacture them. Once a battery is in use, there are no further minerals necessary to sustain it. That’s a very different picture from oil and gas, which must constantly be drilled from the ground, transported via pipelines and tankers, refined and combusted in our gasoline cars to keep those cars moving, said Jim Krane, a researcher at Rice University’s Baker Institute for Public Policy in Houston. In terms of environmental and other impacts, he said, “There’s just no comparison.”

How close are alternatives to fuel-powered aircraft?

As E. V.s are to gas-powered cars, are there greener alternatives to fuel-powered planes that are close to commercialization? — Rashmi Sarnaik, Boston

There are alternatives to fossil-fuel-powered aircraft in development, but whether they are close to commercialization depends on how you define “close.” It’s probably fair to say that the day when a significant amount of air travel is on low- or zero-emissions planes is still far-off.

There has been some work on using hydrogen , including burning it in modified jet engines. Airbus and the engine manufacturer CFM International expect to begin flight testing a hydrogen-fueled engine by the middle of the decade.

As with cars, though, most of the focus in aviation has been on electric power and batteries. The main problem with batteries is how little energy they supply relative to their weight. In cars that’s less of an obstacle (they don’t have to get off the ground, after all) but in aviation, batteries severely limit the size of the plane and how far it can fly.

One of the biggest battery-powered planes to fly so far was a modified Cessna Grand Caravan, test-flown by two companies, Magnix and Aerotec. Turboprop Grand Caravans can carry 10 or more people up to 1,200 miles. The companies said theirs could fly four or five people 100 miles or less.

The limitations of batteries, at least for now, have led some companies to work on other designs. Some use fuel cells, which work like batteries but can continuously supply electricity using hydrogen or other fuel. Others use hybrid systems — like hybrid cars, combining batteries and fossil-fuel-powered engines. In one approach, the engines provide some power and also keep the batteries charged. In another, the engines are used in takeoff and descent, when more power is needed, and the batteries for cruising, which requires less power. That keeps the number of batteries, and the weight, down.

Can countries meet the goals they set in the Paris agreement?

What countries, if any, have a realistic chance of meeting their Paris agreement pledges? — Michael Svetly, Philadelphia

According to Climate Action Tracker , a research group that analyzes climate goals and policies, very few. Ahead of United Nations talks in Glasgow last year, the organization found most major emitters of carbon dioxide, including the United States and China, are falling short of their pledge to stabilize global warming around 1.5 degrees Celsius, or 2.7 degrees Fahrenheit.

A few are doing better than most, including Costa Rica and the United Kingdom. Just one country was on track to meet its promises: Gambia, a small West African nation that has been bolstering its renewable energy use.

What will happen to N.Y.C.?

How is N.Y.C. planning for relocation or redevelopment, or both, of its many low-lying neighborhoods as floodwaters become too high to levee? — A reader in North Bergen, N.J.

New York City has yet to announce plans to fully relocate entire neighborhoods threatened by climate change, with all the steps that would entail: determining which homes to buy, getting agreement from homeowners, finding a new patch of land for the community, building new infrastructure, securing funding and so on.

Relocation projects on that scale, often described as “managed retreat,” remain extremely rare in the United States. What projects have been attempted so far have mostly been in rural areas or small towns , and their success has been mixed.

And the idea of pulling back from the water, while never easy, is especially fraught in New York City, which has some of the highest real estate values in the country. Those high values have been used to justify fantastically expensive projects to protect low-lying land in the city, rather than abandon it — like a $10 billion berm along the South Street Seaport , or a $119 billion sea wall in New York Harbor .

Perhaps unsurprisingly, then, the city’s most recent Comprehensive Waterfront Plan , issued in December, makes no mention of managed retreat. But the plan does include what it calls “housing mobility” — policies aimed at helping individual households move to safer areas, for example by giving people money to buy a new home on higher ground, as well as paying for moving and other costs. The city also says it is limiting the density of new development in high-risk areas.

Robert Freudenberg, a vice president of the Regional Plan Association, a nonprofit planning group in New York, New Jersey and Connecticut, gave city officials credit for beginning to talk about the idea that some areas can’t be protected forever.

“It’s an extremely challenging topic,” Mr. Freudenberg said. But as flooding gets worse, he added, “we can’t not talk about it.”

As oceans rise, will the Great Lakes, too?

The oceans are predicted to rise and affect coastal areas and cities, however, does this rise also affect the coastal areas of the Great Lakes, as the lakes are connected to the Atlantic Ocean via the St. Lawrence River and one would have to assume they would eventually be impacted? — Terri Messinides, Madison, Wis.

The Great Lakes are not directly threatened by rising oceans because of their elevation: The lowest of them, Lake Ontario, is about 240 feet above sea level. The St. Lawrence River carries water from the lakes to the Atlantic Ocean, but because of the elevation change, rising waters in the Atlantic can’t travel in the other direction.

That said, climate change is causing increasingly frequent and intense storms in the Great Lakes region, and the effects, including higher water levels and more flooding, are in many respects the same as those caused by rising seas. It’s just a different manifestation of climate change.

When it comes to precipitation, the past five years, from April 2017 through March 2022, the last month for which complete data is available, have been the second-wettest on record for the Great Lakes Basin, according to records kept by the National Oceanic and Atmospheric Administration . The water has risen accordingly. In 2019, water levels in the lakes hit 100-year highs , causing severe flooding and shoreline erosion.

At the same time, higher temperatures increase the rate of evaporation, which can lead to abnormally low water levels. People who live around the Great Lakes can expect to see both extremes — high water driven by severe rainfall, and low water driven by evaporation — happen more often as the climate continues to warm.

What is the environmental cost of cryptocurrency?

Can you tell us about the damage being done to our environment by crypto mining? I’ve heard the mining companies are trying to switch to renewable energy, yet at the same time reopening old coal power plants to provide the huge amounts of electricity they need. — Barry Engelman, Santa Monica, Calif.

Cryptomining, the enigmatic way in which virtual cryptocurrencies like Bitcoin are created (and which is also behind technology like NFTs ), requires a whole lot of computing power, is highly energy-intensive and generates outsize emissions. We delved into that process, and its environmental impact in this article — but suffice to say the problem isn’t going away soon.

The way Bitcoin is set up, using a process called “proof of work,” means that as interest in cryptocurrencies grows and more people start mining, more energy is required to mine a single Bitcoin. Researchers at Cambridge University estimate that mining Bitcoin uses more electricity than midsize countries like Norway. In New York, an influx of Bitcoin miners has led to the reopening of mothballed power plants.

But you might wonder about the traditional financial system: doesn’t that use energy, too? Yes, of course. But Bitcoin, for all its hype, still makes up just a few percent of all the world’s money or its transactions. So even though one industry study estimated that Bitcoin consumes about a 10th of the energy required by the traditional banking system, that still means Bitcoin’s energy use is outsize.

To address its high emissions footprint, cryptomining has increasingly tapped into renewable forms of energy, like hydroelectric power. But figuring out exactly just how much renewable energy Bitcoin miners use can be tricky. For one, we don’t exactly know where many of these miners are. We do know a lot of crypto miners used to be in China, where they had access to large amounts of hydro power. But now that they’ve largely been kicked out, cryptomining’s global climate impact has likely gotten worse .

In the United States, cryptominers have started to tap an unconventional new energy source: drilled gas, collected at oil and gas wells. The miners argue that this gas would otherwise have been flared or vented into the atmosphere, so no excess emissions are created. The reality is not that clear cut: If the presence of those cryptominers disincentivizes oil and gas companies from piping away that gas to be used elsewhere, any savings effect is blunted.

Other efforts are afoot to make cryptomining less damaging for the environment, including an alternative way of cryptomining involving a process called “proof of stake,” that doesn’t require miners to use as much energy. But unless Bitcoin, the most popular cryptocurrency, switches over, that’s going to do little to dent miners’ energy use.

How much do volcanoes contribute to global warming?

What does the data look like for greenhouse gas emissions in the last 200 years if volcanic activity was subtracted out? — Haley Rowlands, Boston

Volcanic activity generates 130 million to 440 million tons of carbon dioxide per year, according to the United States Geological Survey . Human activity generates about 35 billion tons of carbon dioxide per year — 80 times as much as the high-end estimate for volcanic activity, and 270 times as much as the low-end estimate. And that’s carbon dioxide. Human activity also emits other greenhouse gases, like methane, in far greater quantities than volcanoes.

The largest volcanic eruption in the past century was the 1991 eruption of Mount Pinatubo in the Philippines; if an explosion that size happened every day, NASA has calculated , it would still release only half as much carbon dioxide as daily human activity does. The annual emissions from cement production alone, one small component of planet-warming human activity, are greater than the annual emissions from every volcano in the world.

There is also no evidence that volcanic activity has increased over the past 200 years. While there have been more documented eruptions, researchers at the Smithsonian Institution’s Global Volcanism Program found that this was attributable not to an actual trend, but rather to “increases in populations living near volcanoes to observe eruptions and improvements in communication technologies to report those eruptions.”

All told, volcanic activity accounts for less than 1 percent of greenhouse gas emissions, which is not enough to contribute in any meaningful way to the increase we’ve seen over the past 200 years. The Intergovernmental Panel on Climate Change found in 2013 (see Page 56 of its report ) that the climatic effects of volcanic activity were “inconsequential” over the scale of a century.

Do carbon dioxide concentrations vary around the globe?

Why is the concentration of carbon dioxide in the atmosphere at Mauna Loa Observatory in Hawaii used as the global reference? It’s only one point on Earth. Do concentrations vary between different parts of the world? — Evan, Boston

At any given moment, levels of carbon dioxide in the air vary from place to place, depending on the amount of vegetation and human activity nearby. Which is why, as a location to monitor the average state of the atmosphere, at least over a large part of the Northern Hemisphere, a barren volcano in the middle of the Pacific has much to offer. It’s high above the ground and far enough from major sources of industrial pollution but still relatively accessible to researchers.

Today, the National Oceanic and Atmospheric Administration studies global carbon dioxide levels by looking at readings from Mauna Loa Observatory and a variety of other sources. These include observatories in Alaska, American Samoa and the South Pole, tall towers across the United States, and samples collected by balloons, aircraft and volunteers around the world. ( Here’s a map of all those sites.)

NOAA also checks its measurements at Mauna Loa against others from the same location, including ones taken independently, using different methods, by the Scripps Institution of Oceanography . On average, the difference in their monthly estimates is tiny.

Could a ‘new ice age’ offset global warming?

Will increases in global temperature associated with climate change be mitigated by the coming of a new “ice age?” — Suzanne Smythe, Essex, Conn.

In a “mini ice age,” if it occurred, average worldwide temperatures would drop, thus offsetting the warming that has been caused by emissions of greenhouse gases from the burning of fossil fuels in the last century and a half.

It’s a nice thought: a natural phenomenon comes to our rescue. But it’s not happening, nor is it expected to.

The idea is linked to the natural variability in the amount of the sun’s energy that reaches Earth. The sun goes through regular cycles, lasting about 11 years, when activity swings from a minimum to a maximum. But there are also longer periods of reduced activity, called grand solar minimums. The last one began in the mid-17th century and lasted seven decades.

There is some debate among scientists whether we are entering a new grand minimum . But even if we are, and even if it lasted for a century, the reduction in the sun’s output would not have a significant effect on temperatures. NASA scientists, among others, have calculated that any cooling effect would be overwhelmed by the warming effect of all the greenhouse gases we have pumped, and continue to pump, into the atmosphere.

Responding to the Climate Threat: Essays on Humanity’s Greatest Challenge

Responding to the Climate Threat: Essays on Humanity’s Greatest Challenge

A new book co-authored by MIT Joint Program Founding Co-Director Emeritus Henry Jacoby

From the Back Cover

This book demonstrates how robust and evolving science can be relevant to public discourse about climate policy. Fighting climate change is the ultimate societal challenge, and the difficulty is not just in the wrenching adjustments required to cut greenhouse emissions and to respond to change already under way. A second and equally important difficulty is ensuring widespread public understanding of the natural and social science. This understanding is essential for an effective risk management strategy at a planetary scale. The scientific, economic, and policy aspects of climate change are already a challenge to communicate, without factoring in the distractions and deflections from organized programs of misinformation and denial. 

Here, four scholars, each with decades of research on the climate threat, take on the task of explaining our current understanding of the climate threat and what can be done about it, in lay language―importantly, without losing critical  aspects of the natural and social science. In a series of essays, published during the 2020 presidential election, the COVID pandemic, and through the fall of 2021, they explain the essential components of the challenge, countering the forces of distrust of the science and opposition to a vigorous national response.  

Each of the essays provides an opportunity to learn about a particular aspect of climate science and policy within the complex context of current events. The overall volume is more than the sum of its individual articles. Proceeding each essay is an explanation of the context in which it was written, followed by observation of what has happened since its first publication. In addition to its discussion of topical issues in modern climate science, the book also explores science communication to a broad audience. Its authors are not only scientists – they are also teachers, using current events to teach when people are listening. For preserving Earth’s planetary life support system, science and teaching are essential. Advancing both is an unending task.

About the Authors

Gary Yohe is the Huffington Foundation Professor of Economics and Environmental Studies, Emeritus, at Wesleyan University in Connecticut. He served as convening lead author for multiple chapters and the Synthesis Report for the IPCC from 1990 through 2014 and was vice-chair of the Third U.S. National Climate Assessment.

Henry Jacoby is the William F. Pounds Professor of Management, Emeritus, in the MIT Sloan School of Management and former co-director of the MIT Joint Program on the Science and Policy of Global Change, which is focused on the integration of the natural and social sciences and policy analysis in application to the threat of global climate change.

Richard Richels directed climate change research at the Electric Power Research Institute (EPRI). He served as lead author for multiple chapters of the IPCC in the areas of mitigation, impacts and adaptation from 1992 through 2014. He also served on the National Assessment Synthesis Team for the first U.S. National Climate Assessment.

Ben Santer is a climate scientist and John D. and Catherine T. MacArthur Fellow. He contributed to all six IPCC reports. He was the lead author of Chapter 8 of the 1995 IPCC report which concluded that “the balance of evidence suggests a discernible human influence on global climate”. He is currently a Visiting Researcher at UCLA’s Joint Institute for Regional Earth System Science & Engineering.

Access the Book

View the book on the publisher's website  here .

Order the book from Amazon  here . 

what is climate change in essay

Related Posts

On-campus nuclear reactor approved for university in texas.

On Campus Nuclear Reactor

Bridging the Gaps: The Impact of Interregional Transmission on Emissions an...

Electric transmission towers in a cleared path

MIT students combat climate anxiety through extracurricular teams

Electric Vehicle Team members (from left to right) Anand John, Rachel Mohammed, and Aditya Mehrotra '22, SM '24 monitor their bike’s performance, battery levels, and hydrogen tank levels to estimate the vehicle’s range.

Wind and solar power can generate vital profits for Texas’ dwindling farm...

sheep.jpg

MIT Climate News in Your Inbox

What Are the Effects of Climate Change?

A rapidly warming planet poses an existential threat to all life on earth. Just how bad it gets depends on how quickly we act.

An aerial view of floodwaters overtaking a cluster of buildings

An area flooded by Super Typhoon Noru in the Bulacan Province of the Philippines, September 26, 2022

Rouelle Umali/Xinhua via Getty Images

A headshot of Courtney Lindwall

  • Share this page block

Climate change is our planet’s greatest existential threat . If we don’t limit greenhouse gas emissions from the burning of fossil fuels, the consequences of rising global temperatures include massive crop and fishery collapse, the disappearance of hundreds of thousands of species, and entire communities becoming uninhabitable. While these outcomes may still be avoidable, climate change is already causing suffering and death. From raging wildfires and supercharged storms, its compounding effects can be felt today, outside our own windows.

Understanding these impacts can help us prepare for what’s here, what’s avoidable, and what’s yet to come, and to better prepare and protect all communities. Even though everyone is or will be affected by climate change, those living in the world’s poorest countries—which have contributed least to the problem—are the most climate-vulnerable. They have the fewest financial resources to respond to crises or adapt, and they’re closely dependent on a healthy, thriving natural world for food and income. Similarly, in the United States, it is most often low-income communities and communities of color that are on the frontlines of climate impacts. And because climate change and rising inequality are interconnected crises, decision makers must take action to combat both—and all of us must fight for climate justice. Here’s what you need to know about what we’re up against.

Effects of climate change on weather

Effects of climate change on the environment, effects of climate change on agriculture, effects of climate change on animals, effects of climate change on humans, future effects of climate change.

As global temperatures climb, widespread shifts in weather systems occur, making events like droughts , hurricanes , and floods more intense and unpredictable. Extreme weather events that may have hit just once in our grandparents’ lifetimes are becoming more common in ours. However, not every place will experience the same effects: Climate change may cause severe drought in one region while making floods more likely in another.

Already, the planet has warmed 1.1 degrees Celsius (1.9 degrees Fahrenheit) since the preindustrial era began 250 years ago, according to the Intergovernmental Panel on Climate Change (IPCC) . And scientists warn it could reach a worst-case scenario of 4 degrees Celsius (7.2 degrees Fahrenheit) by 2100 if we fail to tackle the causes of climate change —namely, the burning of fossil fuels (coal, oil, and gas) .

what is climate change in essay

Tokyo during a record-breaking heat wave, August 13, 2020

The Yomiuri Shimbun via AP Images

Higher average temperatures

This change in global average temperature—seemingly small but consequential and climbing—means that, each summer, we are likely to experience increasingly sweltering heat waves. Even local news meteorologists are starting to connect strings of record-breaking days to new long-term trends, which are especially problematic in regions where infrastructure and housing have not been built with intensifying heat in mind. And heat waves aren’t just uncomfortable—they’re the leading cause of weather-related fatalities in the United States.

Longer-lasting droughts

Hotter temperatures increase the rate at which water evaporates from the air, leading to more severe and pervasive droughts . Already, climate change has pushed the American West into a severe “megadrought”—the driest 22-year stretch recorded in at least 1,200 years—shrinking drinking water supplies, withering crops , and making forests more susceptible to insect infestations. Drought can also create a positive feedback loop in which drier soil and less plant cover cause even faster evaporation.

More intense wildfires

This drier, hotter climate also creates conditions that fuel more vicious wildfire seasons—with fires that spread faster and burn longer—putting millions of additional lives and homes at risk. The number of large wildfires doubled between 1984 and 2015 in the western United States. And in California alone, the annual area burned by wildfires increased 500 percent between 1972 and 2018.

Multiple rafts and boats travel through floodwaters on a multi-lane roadway, along with people walking in the waist-high water

Evacuation after Hurricane Harvey in Houston, August 28, 2017

David J. Phillip/AP Photo

Stronger storms

Warmer air also holds more moisture, making tropical cyclones wetter, stronger, and more capable of rapidly intensifying. In the latest report from the IPCC , scientists found that daily rainfall during extreme precipitation events would increase by about 7 percent for each degree Celsius of global warming, increasing the dangers of flooding . The frequency of severe Category 4 and 5 hurricanes is also expected to increase. In 2017, Hurricane Harvey, a devastating Category 4 storm, dumped a record 275 trillion pounds of rain and resulted in dozens of deaths in the Houston area.

From the poles to the tropics, climate change is disrupting ecosystems. Even a seemingly slight shift in temperature can cause dramatic changes that ripple through food webs and the environment.

Small chunks of ice melting in a body of water, with low, snowy mountains in the background

The lake at Jökulsárlón, a glacial lagoon in Iceland, which has grown because of continued glacial melting

Eskinder Debebe/UN Photo

Melting sea ice

The effects of climate change are most apparent in the world’s coldest regions—the poles. The Arctic is heating up twice as fast as anywhere else on earth, leading to the rapid melting of glaciers and polar ice sheets, where a massive amount of water is stored. As sea ice melts, darker ocean waters that absorb more sunlight become exposed, creating a positive feedback loop that speeds up the melting process. In just 15 years, the Arctic could be entirely ice-free in the summer.

Sea level rise

Scientists predict that melting sea ice and glaciers, as well as the fact that warmer water expands in volume, could cause sea levels to rise as much as 6.6 feet by the end of the century, should we fail to curb emissions. The extent (and pace) of this change would devastate low-lying regions, including island nations and densely populated coastal cities like New York City and Mumbai.

But sea level rise at far lower levels is still costly, dangerous, and disruptive. According to the 2022 Sea Level Rise Technical Report from the National Ocean Service, the United States will see a foot of sea level rise by 2050, which will regularly damage infrastructure, like roads, sewage treatment plants, and even power plants . Beaches that families have grown up visiting may be gone by the end of the century. Sea level rise also harms the environment, as encroaching seawater can both erode coastal ecosystems and invade freshwater inland aquifers, which we rely on for agriculture and drinking water. Saltwater incursion is already reshaping life in nations like Bangladesh , where one-quarter of the lands lie less than 7 feet above sea level.

People with umbrellas walk on a street through ankle-deep water

A waterlogged road, caused by rainstorm and upstream flood discharge, in the Shaoguan, Guangdong Province of China, June 21, 2022

Stringer/Anadolu Agency via Getty Images

In addition to coastal flooding caused by sea level rise, climate change influences the factors that result in inland and urban flooding: snowmelt and heavy rain. As global warming continues to both exacerbate sea level rise and extreme weather, our nation’s floodplains are expected to grow by approximately 45 percent by 2100. In 2022, deadly flooding in Pakistan—which inundated as much as a third of the country—resulted from torrential rains mixed with melting glaciers and snow.

Warmer ocean waters and marine heat waves

Oceans are taking the brunt of our climate crisis. Covering more than 70 percent of the planet’s surface, oceans absorb 93 percent of all the heat that’s trapped by greenhouse gases and up to 30 percent of all the carbon dioxide emitted from burning fossil fuels.

Temperature-sensitive fish and other marine life are already changing migration patterns toward cooler and deeper waters to survive, sending food webs and important commercial fisheries into disarray. And the frequency of marine heat waves has increased by more than a third . These spikes have led to mass die-offs of plankton and marine mammals.

To make matters worse, the elevated absorption of carbon dioxide by the ocean leads to its gradual acidification , which alters the fundamental chemical makeup of the water and threatens marine life that has evolved to live in a narrow pH band. Animals like corals, oysters, and mussels will likely feel these effects first, as acidification disrupts the calcification process required to build their shells.

Ecosystem stressors

Land-based ecosystems—from old-growth forests to savannahs to tropical rainforests—are faring no better. Climate change is likely to increase outbreaks of pests, invasive species, and pathogen infections in forests. It’s changing the kinds of vegetation that can thrive in a given region and disrupting the life cycles of wildlife, all of which is changing the composition of ecosystems and making them less resilient to stressors. While ecosystems have the capacity to adapt, many are reaching the hard limits of that natural capacity . More repercussions will follow as temperatures rise.

Climate change appears to be triggering a series of cascading ecological changes that we can neither fully predict nor, once they have enough momentum, fully stop. This ecosystem destabilization may be most apparent when it comes to keystone species that have an outsize- role in holding up an ecosystem’s structure.

An aerial view two people standing in a large field covered by a coffee plants

Coffee plants destroyed by frost due to extremely low temperatures near Caconde in the São Paulo state of Brazil, August 25, 2021

Jonne Roriz/Bloomberg via Getty Images

Less predictable growing seasons

In a warming world, farming crops is more unpredictable—and livestock, which are sensitive to extreme weather, become harder to raise. Climate change shifts precipitation patterns, causing unpredictable floods and longer-lasting droughts. More frequent and severe hurricanes can devastate an entire season’s worth of crops. Meanwhile, the dynamics of pests, pathogens, and invasive species—all of which are costly for farmers to manage—are also expected to become harder to predict. This is bad news, given that most of the world’s farms are small and family-run. One bad drought or flood could decimate an entire season’s crop or herd. For example, in June 2022, a triple-digit heat wave in Kansas wiped out thousands of cows. While the regenerative agriculture movement is empowering rural communities to make their lands more resilient to climate change, unfortunately, not all communities can equitably access the support services that can help them embrace these more sustainable farming tactics.

Reduced soil health

Healthy soil has good moisture and mineral content and is teeming with bugs, bacteria, fungi, and microbes that in turn contribute to healthy crops. But climate change, particularly extreme heat and changes in precipitation, can degrade soil quality. These impacts are exacerbated in areas where industrial, chemical-dependent monoculture farming has made soil and crops less able to withstand environmental changes.

Food shortages

Ultimately, impacts to our agricultural systems pose a direct threat to the global food supply. And food shortages and price hikes driven by climate change will not affect everyone equally: Wealthier people will continue to have more options for accessing food, while potentially billions of others will be plummeted into food insecurity—adding to the billions that already have moderate or severe difficulty getting enough to eat.

A small blue frog sits on a browb leaf.

The poison dart frog’s survival is currently threatened by habitat loss and climate change.

Chris Mattison/Minden Pictures

It’s about far more than just the polar bears: Half of all animal species in the world’s most biodiverse places, like the Amazon rainforest and the Galapagos Islands, are at risk of extinction from climate change. And climate change is threatening species that are already suffering from the biodiversity crisis, which is driven primarily by changes in land and ocean use (like converting wild places to farmland) and direct exploitation of species (like overfishing and wildlife trade). With species already in rough shape—more than 500,000 species have insufficient habitat for long-term survival—unchecked climate change is poised to push millions over the edge.

Climate change rapidly and fundamentally alters (or in some cases, destroys) the habitat that wildlife have incrementally adapted to over millennia. This is especially harmful for species’ habitats that are currently under threat from other causes. Ice-dependent mammals like walruses and penguins, for example, won’t fare well as ice sheets shrink. Rapid shifts in ocean temperatures stress the algae that nourishes coral reefs, causing reefs to starve—an increasingly common phenomenon known as coral bleaching . Disappearing wetlands in the Midwest’s Prairie Pothole Region means the loss of watering holes and breeding grounds for millions of migratory birds. (Many species are now struggling to survive, as more than 85 percent of wetlands have been lost since 1700). And sea level rise will inundate or erode away many coastal habitats, where hundreds of species of birds, invertebrates, and other marine species live.

Many species’ behaviors—mating, feeding, migration—are closely tied to subtle seasonal shifts, as in temperature , precipitation level, and foliage. In some cases, changes to the environment are happening quicker than species are able to adapt. When the types and quantity of plant life change across a region, or when certain species bloom or hatch earlier or later than in the past, it impacts food and water supplies and reverberates up food chains.

A thick smog hangs over a mostly-deserted city street.

Wildfire smoke–filled air in Multnomah County, Oregon, September 16, 2020

Motoya Nakamura/Multnomah County Communications, CC BY NC-ND 4.0

Ultimately, the way climate change impacts weather, the environment, animals, and agriculture affects humanity as well. But there’s more. Around the world, our ways of life—from how we get our food to the industries around which our economies are based—have all developed in the context of relatively stable climates. As global warming shakes this foundation, it promises to alter the very fabric of society. At worst, this could lead to widespread famine, disease, war, displacement , injury, and death. For many around the world, this grim forecast is already their reality. In this way, climate change poses an existential threat to all human life.

Human health

Climate change worsens air quality . It increases exposure to hazardous wildfire smoke and ozone smog triggered by warmer conditions, both of which harm our health, particularly for those with pre-existing illnesses like asthma or heart disease.

Insect-borne diseases like malaria and Zika become more prevalent in a warming world as their carriers are able to exist in more regions or thrive for longer seasons. In the past 30 years, the incidence of Lyme disease from ticks has nearly doubled in the United States, according to the U.S. Environmental Protection Agency (EPA). Thousands of people face injury, illness , and death every year from more frequent or more intense extreme weather events. At a 2-degree Celsius rise in global average temperature, an estimated one billion people will face heat stress risk. In the summer of 2022 alone, thousands died in record-shattering heat waves across Europe. Weeks later, dozens were killed by record-breaking urban flooding in the United States and South Korea—and more than 1,500 people perished in the flooding in Pakistan , where resulting stagnant water and unsanitary conditions threaten even more.

The effects of climate change—and the looming threat of what’s yet to come—take a significant toll on mental health too. One 2021 study on climate anxiety, published in the journal Nature , surveyed 10,000 young people from 10 different countries. Forty-five percent of respondents said that their feelings about climate change, varying from anxiety to powerlessness to anger, impacted their daily lives.

A girl sits on a hospital bed that is covered in blue netting.

A patient with dengue fever, a mosquito-borne disease, in Karachi, Pakistan, where the spread of diseases worsened due to flooding, September 2022

Fareed Khan/AP Photo

Worsening inequity

The climate crisis exacerbates existing inequities. Though wealthy nations, such as the United States, have emitted the lion’s share of historical greenhouse gas emissions, it’s developing countries that may lack the resources to adapt and will now bear the brunt of the climate crisis. In some cases, low-lying island nations—like many in the Pacific —may cease to exist before developed economies make meaningful reductions to their carbon emissions.

Even within wealthier nations, disparities will continue to grow between those rich enough to shield themselves from the realities of climate change and those who cannot. Those with ample resources will not be displaced from their homes by wars over food or water—at least not right away. They will have homes with cool air during heat waves and be able to easily evacuate when a hurricane is headed their way. They will be able to buy increasingly expensive food and access treatment for respiratory illness caused by wildfire smoke. Billions of others can’t—and are paying the highest price for climate pollution they did not produce.

Hurricane Katrina, for example, displaced more than one million people around the Gulf Coast. But in New Orleans , where redlining practices promoted racial and economic segregation, the city’s more affluent areas tended to be located on higher ground—and those residents were able to return and rebuild much faster than others.

Displacement

Climate change will drive displacement due to impacts like food and water scarcities, sea level rise, and economic instability. It’s already happening. The United Nations Global Compact on Refugees recognizes that “climate, environmental degradation and disasters increasingly interact with the drivers of refugee movements.” Again, communities with the fewest resources—including those facing political instability and poverty—will feel the effects first and most devastatingly.

The walls of a small room are pulled down to the studs, with debris and mold visible on the floor.

A flood-damaged home in Queens, New York, December 1, 2021

K.C. Wilsey/FEMA

Economic impacts

According to the 2018 National Climate Assessment, unless action is taken, climate change will cost the U.S. economy as much as $500 billion per year by the end of the century. And that doesn’t even include its enormous impacts on human health . Entire local industries—from commercial fishing to tourism to husbandry—are at risk of collapsing, along with the economic support they provide.

Recovering from the destruction wrought by extreme weather like hurricanes, flash floods, and wildfires is also getting more expensive every year. In 2021, the price tag of weather disasters in the United States totaled $145 billion —the third-costliest year on record, including a number of billion-dollar weather events.

The first wave of impacts can already be felt in our communities and seen on the nightly news. The World Health Organization says that in the near future, between 2030 and 2050, climate change is expected to cause an additional 250,000 deaths per year from things like malnutrition, insect-borne diseases, and heat stress. And the World Bank estimates that climate change could displace more than 140 million people within their home countries in sub-Saharan Africa, South Asia, and Latin America by 2050.

But the degree to which the climate crisis upends our lives depends on whether global leaders decide to chart a different course. If we fail to curb greenhouse gas emissions, scientists predict a catastrophic 4.3 degrees Celsius , (or around 8 degrees Fahrenheit) of warming by the end of the century. What would a world that warm look like? Wars over water. Crowded hospitals to contend with spreading disease. Collapsed fisheries. Dead coral reefs. Even more lethal heat waves. These are just some of the impacts predicted by climate scientists .

Workers move a large solar panel into place in a row on the shore of a lake

Solar panel installation at a floating photovoltaic plant on a lake in Haltern am See, Germany, April 2022

Martin Meissner/AP Photo

Climate mitigation, or our ability to reverse climate change and undo its widespread effects, hinges on the successful enactment of policies that yield deep cuts to carbon pollution, end our dependence on dangerous fossil fuels and the deadly air pollution they generate, and prioritize the people and ecosystems on the frontlines. And these actions must be taken quickly in order to ensure a healthier present day and future. In one of its latest reports, the IPCC presented its most optimistic emissions scenario, in which the world only briefly surpasses 1.5 degrees of warming but sequestration measures cause it to dip back below by 2100. Climate adaptation , a term that refers to coping with climate impacts, is no longer optional ; it’s necessary, particularly for the world’s most vulnerable populations.

By following the urgent warnings of the IPCC and limiting warming, we may be able to avoid passing some of the critical thresholds that, once crossed, can lead to potentially irreversible, catastrophic impacts for the planet, including more warming. These thresholds are known as climate tipping points and refer to when a natural system "tips" into an entirely different state. One example would be Arctic permafrost, which stores carbon like a freezer: As the permafrost melts from warming temperatures, it releases carbon dioxide into the atmosphere.

Importantly, climate action is not a binary pass-fail test. Every fraction of a degree of warming that we prevent will reduce human suffering and death, and keep more of the planet’s natural systems intact. The good news is that a wide range of solutions exist to sharply reduce emissions, slow the pace of warming, and protect communities on the frontlines of climate impacts. Climate leaders the world over—those on major political stages as well as grassroots community activists—are offering up alternative models to systems that prioritize polluters over people. Many of these solutions are rooted in ancestral and Indigenous understandings of the natural world and have existed for millennia. Some solutions require major investments into clean, renewable energy and sustainable technologies. To be successful, climate solutions must also address intersecting crises—like poverty, racism, and gender inequality —that compound and drive the causes and impacts of the climate crisis. A combination of human ingenuity and immense political will can help us get there.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington.

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels. 

A rainbow arches over lush green mountains and wind turbines in a valley

Urge President Biden and Congress to make equitable climate action a top priority

2023 was the hottest year on record, underscoring the urgency of shifting to clean energy and curbing the carbon pollution that is driving the climate crisis. President Biden and Congress have the tools to get the job done.

Related Stories

Protesters stand outside P&G headquarters with signs reading, "Charmin: Stop flushing our forests!"

When Customers and Investors Demand Corporate Sustainability

what is climate change in essay

COP27: The Issues, the Tensions, and the Urgent Need for Unity on Climate

Three men unload cases of water from the back of a delivery truck and into a brick building

Mutual Aid and Disaster Justice: “We Keep Us Safe”

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

Essential Principles for Understanding and Addressing Climate Change

About this guide.

Climate Literacy: Essential Principles for Understanding and Addressing Climate Change presents information that is important for individuals and communities to know and understand about Earth’s climate, the impacts of climate change, and solutions. Principles in the guide can serve as discussion starters or launching points for learning about the climate crisis and what’s being done to address it across the world.

The guide aims to promote greater climate literacy by providing this educational and communication framework of principles and concepts.

Download the Climate Literacy Guide in PDF

A person with lighter skin wearing a white coverall and blue gloves while holding a narrow cylinder of ice parallel to the ground. Extensive hand-written notes on ice-core research are superimposed on the photograph.

Artist's statement: “Climate change has compressed and conflated human and geologic time scales, making it essential to find ways to conceptualize 'deep time.' This work seeks to make notions of deep time comprehensible through visual exploration of glacier ice, as well as other earthly archives. This project includes intimate collaborations with paleoclimatologists by having them annotate directly onto my photographic prints—a contemporary taxonomy of ice and climate. This portrait was photographed in a cold/clean lab at Montana State University. The ice shown is 10,827 (left side) to 10,833 years old.” Credit: Art x Climate, Ian Van Coller, Dr. Avila Holding Cut Antarctic Icecore, (2017, pigment print on washi with annotations)

A. Climate is not the same thing as weather. Weather is the minute-by-minute condition of the atmosphere (such as temperature and precipitation) on a local scale. Climate is the long-term average weather conditions of an area. The term climate change refers to significant and persistent change in an area’s average climate conditions or their extremes. Learn more about climate science

B. The components and processes of Earth’s climate system are governed by the laws of science. Therefore, the behavior of the climate system can be understood and modeled through careful, systematic study. Our understanding of the climate system will only continue to improve as science advances. Learn more about recent advancements in climate science

C. To learn about how climate has changed in the distant past, scientists use natural records, such as tree rings, ice cores, and sedimentary layers. Indigenous Knowledges and historical observations such as personal journals also document past climate change.

D. Scientific observations indicate that the global climate varies over time; it has changed in the past, is changing now, and will change in the future. The natural processes driving Earth’s long-term climate variability, such as changes in solar energy reaching Earth, do not explain the rapid climate change observed in recent decades. The only credible explanation for recent climate change is human activities. Learn more about how natural causes alone do not explain climate change

E. The magnitude and trends of climate change are not the same at all locations on Earth. For example, the land warms faster than the ocean, and the polar regions warm faster than the tropics. 

F. Research into past climate changes has shown that there are parts of the Earth system that change gradually until they reach a tipping point, after which they change more quickly. Some of these changes may be irreversible. The risk of crossing these tipping points increases as climate change intensifies. Ecosystems, ice sheets, and ocean currents may all have tipping points. Learn more about tipping points

G. Climate models have been constructed using observational data and physical laws. These models can project a range of potential future climate conditions that result from different assumptions about the future, such as the amount of greenhouse gas emissions. Models that include both human and natural systems examine how climate impacts cascade across sectors and scales and, in turn, how human systems and choices influence climate. Learn more about climate modeling

H. Integrated approaches that bring together knowledge from many contexts and areas of study are essential to understanding the full picture of climate change. Considering the perspective of only a single sector, topic, or region may cause climate impacts or solutions to be overlooked. Learn more about interdisciplinary climate research

I. Coproduced climate change research projects integrate both community-based and science-based insights and solutions to climate change. Coproduced research often includes experts within relevant knowledge contexts, such as Indigenous Knowledge holders or multigenerational farming communities. This kind of research can give rise to community-based climate solutions. Learn more about coproduction of climate research

Colorful pencil drawing shows a landscape featuring a stream, mountains, cliffs, trees, cacti, wildflowers, elk, wolf, antelope, salmon, tortoise, hawk, bees, and other flora and fauna, as well as two humans.

Artist’s statement: “My drawing depicts 11 endangered species and their different ecosystems found in the Western United States. The most difficult challenge was making this piece cohesive, even across different habitats that normally wouldn’t be found together. I live in Boise, Idaho, and am surrounded by wild places that I consider part of my home. I want to ensure that these ecosystems are protected. I hope viewers come away with an appreciation for our Western wild places and the importance of biodiversity and healthy ecosystems threatened by climate change and habitat loss.” Credit: Taelyn B., Art x Climate, Endangered West, (2022, colored pencil)

A. Nearly all the energy that flows through the Earth system comes from sunlight. Earth’s climate is determined by the movement of energy through the Earth system—the ocean, atmosphere, clouds, ice, land, and life—and also includes energy and heat produced by humans and human activity. Learn more about Earth’s energy balance

B. Some of the sunlight that reaches Earth is reflected back to space by Earth’s atmosphere and surface, but about 70% of it is absorbed by the atmosphere, land, and ocean. The warmed Earth radiates heat back into the atmosphere, where the heat is absorbed by greenhouse (also known as heat-trapping) gases that radiate some of this heat back toward  Earth. This leads to the overall heating of Earth’s surface—known as the greenhouse effect. Learn more about the greenhouse effect

C. Greenhouse gases added to the atmosphere by human activities intensify the greenhouse effect and drive global warming. The greenhouse gases produced by human activities include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and fluorinated gases. Learn more about greenhouse gas emissions

D. Water vapor (H 2 O) also traps heat, and a warmer atmosphere holds more moisture than a cooler one. As a result, water vapor amplifies the warming caused by the addition of human-produced greenhouse gases. Learn more about water vapor and the greenhouse effect

E. Some greenhouse gases are more effective at warming the planet than others. The heat-trapping ability of a greenhouse gas, plus how much of it is in the atmosphere and how long it endures, determines its contribution to total warming. For example, even though there is about 200 times more carbon dioxide in the atmosphere than methane, and carbon dioxide stays in the atmosphere for much longer, methane has contributed 20% to 30% of global warming to date. Learn more about the strength of greenhouse gases

F. Life—including microbes, plants, animals, and humans—is a major driver of the global carbon cycle and can influence global climate by modifying the chemical makeup of the atmosphere. The geologic record shows that life has significantly altered the atmosphere during Earth’s history.

G. Carbon naturally moves very slowly between the atmosphere and reservoirs in the Earth, including rocks, soils, and the deep ocean. Human activities are disrupting this cycle by taking carbon out of storage underground and releasing it into the atmosphere, primarily by burning fossil fuels such as coal, oil, and natural gas. Learn more about how humans are changing the carbon cycle

H. While some of these human-caused carbon dioxide emissions are absorbed quickly by the ocean and forests, much of the carbon dioxide will remain in the atmosphere before it is absorbed by the ocean over thousands of years.

I. As concentrations of carbon dioxide and other greenhouse gases increase, Earth’s average temperature rises in response. This rise in temperature causes a significant change in the climate averages and extremes that people and the natural environment experience. Learn more about carbon dioxide's role in Earth’s climate

Greenhouse Effect Diagram

Greenhouse Effect Diagram. Credit: NOAA Climate Program Office, Graphic by Anna Eshelman

A. Human activities have unequivocally caused the global warming observed over the industrial era by increasing the levels of carbon dioxide and other greenhouse gases in the atmosphere. Learn more about how human activities cause global warming  

B. Three-quarters of all greenhouse gases emitted by human activities come from the use of fossil fuels, primarily coal, oil, and natural gas, for transportation and energy. The rest come from industrial processes, agriculture, landfills, and land-use changes such as deforestation. Learn more about sources of greenhouse gas emissions

C. Social systems—including institutions, policies, practices, values, and behaviors—determine the amount of greenhouse gases emitted. Social systems also inequitably distribute the economic benefits of energy consumption and the impacts of greenhouse gas emissions and climate change. Learn more about how social systems drive climate change 

D. The global climate will continue to warm in the future. How much it warms depends primarily on current and future emissions of greenhouse gases from human activities. By far the biggest uncertainty in terms of future climate change is the human factor—how much action global society will take to limit greenhouse gas emissions. Learn more about future climate change 

E. Many of the human activities that produce greenhouse gases also produce small airborne particles called aerosols. Aerosols generally cool the planet by reflecting sunlight back into space, and by seeding clouds that reflect sunlight. This cooling effect is currently not big enough to fully counteract human-caused warming. Most human-produced aerosols, such as smoke from power plants and biomass burning, also have negative effects on air quality and human health. Learn more about climate change and air quality  

F. Human activities continue to increase the levels of greenhouse gases in the atmosphere, although contributions vary across regions, sectors, and populations. Learn more about global greenhouse gas contributions

G. Carbon dioxide remains in the atmosphere for centuries or longer. This means that carbon dioxide emitted decades ago continues to contribute to climate change today. Among countries, the United States is the largest emitter of the carbon dioxide that has accumulated in the atmosphere since the Industrial Revolution. From 1850 to 2021, total emissions from the United States are estimated to have caused around 17% of global warming, China 12%, European Union 10%, and the 47 least-developed countries collectively 6%. 

H. Annual U.S. greenhouse gas emissions have been slowly declining since 2007, while emissions have increased rapidly in China, India, and other nations with rapidly industrializing economies. China is currently the top annual emitter as a nation. Learn more about global greenhouse gas emissions

I. Reducing emissions of greenhouse gases can limit future global warming and its impacts. Parties to the 2015 Paris Agreement set a goal of holding the global average temperature to well below 2°C (3.6°F) above preindustrial levels, and pursuing efforts to limit warming to 1.5°C (2.7°F). Learn more about the Paris Agreement 

J. The Paris Agreement also sets an aim to make financial flows consistent with a pathway towards low greenhouse gas emissions and climate-resilient development. However, public and private financial systems continue to support investment in fossil fuels. Currently, global spending on fossil fuels outweighs investments in adaptation and mitigation. Current investments in reducing greenhouse gas emissions are not large enough to keep warming below 2°C (3.6°F).

A firefighter walks into a smoke-filled area with hazy sunlight ahead of them.

A firefighter goes to work in a smoke-filled environment at the Pioneer Fire in Washington State. Wildfires have increased in frequency and intensity due to human activity. Credit: U.S. Forest Service

A. As of 2021, Earth had warmed by about 1.1°C (2°F) above preindustrial levels. Most of this warming has occurred since 1980. The current rate of warming is roughly 30 times faster than the rate at which Earth warmed as it emerged from the last ice age.

B. The last time the amount of carbon dioxide in the atmosphere was as high as it is today was about 3.2 million years ago, when the world was significantly warmer and sea levels were between 18 and 63 feet (5.5 to 19 meters) higher than today. Learn more about past climate

C. Human societies developed over the past 10,000 years during a very stable period in Earth's climate history. The rapid rise in temperatures and resulting climate changes since 1980 mean that the economic, transportation, agricultural, and social systems we rely on are vulnerable. Learn more about climate change impacts on social systems

D. Climate change is already increasing the severity, geographic scale, and frequency of extreme events, such as heatwaves, floods, strong storms, droughts, and wildfires around the United States and the world. As the world warms, these events will become even more extreme, worsening existing social inequalities and leading to greater health, resource, and migration challenges. Existing societal challenges, intensified by increasing climate change, will exacerbate the drivers of instability and threaten both national and global security. To deal with the direct effects of extreme events, as well as the increased instability resulting from them, the need for humanitarian assistance will increase worldwide. Learn more about changes to extreme events

E. Globally, a warmer atmosphere holds more total water vapor, and some areas will get wetter. Warmer air with more water vapor also causes heavier rainfall during storms, which can lead to flooding. However, over many regions, temperature changes will outpace the effects of increases in humidity, making dry places even drier and droughts more intense.

F. Changing precipitation and snowmelt patterns are altering the distribution of Earth’s freshwater and the timing of runoff. Droughts are becoming more frequent and severe in many regions, while, at the same time, extreme precipitation events are becoming more frequent and intense in other regions. Some regions are experiencing both—more frequent or severe droughts in the summer, and more extreme precipitation events in the winter. These and other climate change impacts threaten the quality and reliability of water supplies. Learn more about the changing water cycle

G. Global warming is causing the global average sea level to rise. As ocean water warms, it expands, taking up more space. Water from melting land ice is also being added to the ocean, raising sea levels. As the sea level rises, salt water contaminates coastal freshwater sources, damages coastal homes and infrastructure, harms coastal ecosystems, and inundates islands and low-lying land. Sea level rise also increases the risk of damage to buildings and infrastructure from high tide flooding and storm surge. Learn more about the impacts of climate change on coastal communities

H. The ocean has slowed climate change by absorbing huge amounts of heat and carbon. About 90% of the warming caused by greenhouse gas emissions has been absorbed by the ocean, altering its global circulation patterns and threatening marine life. The ocean has also taken up 25% of all carbon dioxide produced by human activities, making it more acidic and leading to harmful impacts on marine species, food webs, and coastal economies. As climate change continues, the ocean’s capacity to store heat and carbon is likely to weaken, reducing its ability to buffer the effects of greenhouse gas emissions. Learn more about the ocean and climate change

I. All species, including humans, survive within specific ranges of temperature, precipitation, humidity, sunlight, and other climate conditions. Organisms exposed to climate conditions outside their normal ranges must adapt or move elsewhere, or they may face negative health impacts. If climate conditions sufficiently alter a species’ habitat, consequences can include extinction. Changes to the abundance of different species can threaten the stability and survival of their ecosystems. Learn more about ecosystem changes

J. As local climate conditions change, many organisms, including animals, plants, and microbes, are attempting to move to areas with more favorable conditions. However, their movement can be limited or prevented by natural barriers such as mountains, human-built infrastructure such as roads, or competition with other species. The timings of blooms, migrations, and hibernations have changed and will continue to change, sometimes dramatically, potentially altering food webs and spreading infectious diseases. These processes disrupt existing ecosystems and can threaten the survival of entire species, biomes, and human livelihoods. Learn more about ecosystem impacts

K. The impacts of climate change and other stressors may drive people to leave their homes temporarily or permanently, either within the same country or across a border. For example, rising temperatures and shifting rainfall could lead to increased crop failures, compelling farmers to seek more reliable livelihoods in nearby cities or neighboring regions. Climate migration is one type of human migration, which can have many complex causes and impacts. If migration is sudden and unplanned, it may increase demand for scarce resources and potentially exacerbate tension between migrants and local communities. Governments may also struggle to provide adequate services amid large-scale displacement. Learn more about climate change and migration

L. Climate change negatively impacts human health through more frequent and severe extreme heat and other extreme events; increased transmission of infectious and vector-borne diseases; declines in food and water security; and degraded air and water quality. Exposure to extreme events can result in feelings of vulnerability, uncertainty, and anxiety or depression, with negative impacts on mental health. Marginalized and low-income populations tend to be more exposed to climate hazards and associated health impacts than other groups. Learn more about climate change and human health

M. Climate change can harm businesses, governments, and economies through costly disruptions to services and supply chains, damage to infrastructure, and lost productivity. At the same time, climate solutions will create new economic opportunities for organizations. Learn more about climate change and the economy

Tribal and government leaders gather together at a table to complete an activity with maps and information on renewable energy.

Members of the San Carlos Apache Tribe, Klamath Tribe, and White Earth Nation, alongside a representative of the DOI-Bureau of Indian Affairs, collaborate on potential Tribal renewable energy projects at the National Renewable Energy Laboratory. Credit: DOE, Photo by John De La Rosa (NREL)

A. With careful planning and execution, actions to reduce greenhouse gas emissions and adapt to climate risks can be carried out in ways that promote climate justice in the United States, which involves ensuring benefits from climate action are shared equitably and fairly. Achieving sustainable outcomes that promote equity in the United States, rather than exacerbate inequities, involves understanding how the impacts of and responses to climate change affect different groups of people, including those who have been marginalized and underserved. Including affected communities in decision-making can help reduce risks and distribute benefits equitably.  Learn more about climate justice

B. Climate change is both a product of society and a force that is shaping it. Its effects both reflect and exacerbate existing social inequities, with some people and communities suffering disproportionate harm. Societies can help address these issues by acknowledging the intersections between climate change and key social challenges, such as those relating to racial, economic, and gender inequity; rural communities; public health; migration; and ecosystem health. Learn more about intersecting challenges  

C. Although climate change affects everyone, marginalized and underserved communities are more likely to experience harmful impacts. The long-lasting effects of discriminatory investment practices, unequal distribution of resources, and exclusionary laws have pushed Indigenous communities, communities of color, and low-income communities into locations where they are more vulnerable to climate change. These communities are often overburdened, experiencing one or more types of environmental injustice in the form of disproportionate health-related impacts from fossil fuel-based energy systems, reduced capacity to prepare for and recover from extreme events, settlement in hotter or more flood-prone areas, or lower-quality infrastructure and services. Learn more about inequitable climate impacts

D. Certain groups of people are at higher risk of negative health impacts from climate change. Those likely to experience elevated health impacts include the very young, the very old, people with disabilities or chronic health conditions, low-income individuals and communities, and other marginalized communities. Learn more about climate change impacts on human health  

E. Rural communities face unique challenges from climate change. Rural areas are often under-resourced and therefore less resilient to climate impacts. Climate change also worsens stressors they already face, including physical isolation, limited economic diversity, and higher poverty rates, combined with an aging population. At the same time, rural communities are key to many climate adaptation and mitigation efforts, from climate-smart agricultural practices, to new sources of renewable energy, to restoring critical habitats for wildlife.

F. Indigenous Peoples hold unique knowledges and experiences about how to live sustainably on their lands. Their ways of life are threatened as local climates change and the ecosystems they rely on are altered. Tribal education systems are engaged in building community resilience and supporting the next generation of climate leaders. Learn more about how Indigenous leadership is guiding climate responses

G. An equitable and sustainable U.S. response to climate change has the potential to reduce climate impacts while improving well-being, strengthening resilience, benefiting the economy, and, in part, redressing legacies of racism, injustice, and inequity within the nation.   Learn more about just climate solutions

H. Participatory research and planning processes can help reduce inequities and the chances of causing unintended harm through climate actions. Taking inclusive and equitable approaches to addressing climate change in the United States requires that the characteristics of a community, the factors that shaped them, and the interests of those affected are central to designing and implementing climate solutions. Approaches to decision-making that are based on broad and meaningful participation by all affected groups can build trust, promote social cohesion, and increase support, implementation, and efficacy for adaptation and mitigation strategies and plans. Learn more about how inclusivity improves climate responses

I. A just transition within the United States is the process of responding to climate change with transformative actions that address the root causes of climate vulnerability while ensuring equitable access to decent work and quality jobs; affordable, low-carbon energy; environmental benefits such as reduced air pollution; and improved quality of life for all. This type of transition has the potential to enable more ambitious, effective, and lasting adaptation, resilience, and mitigation actions, including by creating good-paying jobs in renewable energy industries. Learn more about just transitions

An oil painting shows a diverse landscape, with the left two-thirds showing a primarily lush, green scene with a snow-capped mountain, buildings with green roofs, farms, a farmers’ market, deer, bears, and salmon. A storm with lightning appears in the background. Toward the top right, the scene becomes more arid, with a wildfire and brown, treeless hills topped by wind turbines.

Artist's statement: “This piece was commissioned by the University of Washington Climate Impacts Group. Developed in collaboration with scientists and tribal representatives, the work acknowledges the inevitable while highlighting how we can cultivate good. From the urban West Coast to the shrubsteppe of eastern Washington, resiliency looks different in every landscape. True resiliency is not bound within the realm of science; social justice is equally as vital to every solution. The piece aims to make climate resiliency concepts more accessible. After all, before any goal can be accomplished, it must first be envisioned.” Credit: Claire Seaman, Art x Climate, Imagining Climate Resiliency in the Pacific Northwest (2021, oil on canvas)

A. Adapting and building resilience to climate impacts in all aspects of society saves lives; reduces structural, environmental, and economic damage; protects natural resources; helps preserve cultures; and often results in improved quality of life. Learn more about climate adaptation 

B. Adaptation and mitigation are complementary strategies for reducing the risks of climate change. Taking actions to adapt and build resilience to current and future extreme events and other climate changes, while dramatically reducing emissions of greenhouse gases, will also reduce loss of life and property and limit damage to ecosystems and human health.

C. Adaptation will become more expensive and less effective as the planet warms. Building a costly seawall today, for example, will be insufficient if water levels rise above the height of the wall in the future. Without mitigation, there will come a time when the impacts of climate change overwhelm our capacity to adapt.

D. Current adaptation efforts and investments are insufficient to address today’s risks and keep pace with future climate change. Adequate adaptation would involve not only scaling up efforts across a wider range of actors, sectors, and systems, but also more transformative adaptation involving profound shifts in our institutions, behaviors, values, or technologies. For example, transformative actions could shift housing development to less flood-prone areas to account for rising seas, or redesign buildings and cities to manage heat extremes. Learn more about transformative adaptation

E. People may be able to adapt and reduce their vulnerability in different ways, depending on their circumstances. For example, some communities and individuals may move to higher ground to avoid flooding and rising sea levels, choose crops that will thrive under new climate conditions, develop nature-based solutions such as restoring vegetation to lessen storm impacts, and adopt new technologies or building standards suited for new weather extremes. However, the ability to adapt may be limited by the capacity of a community or individual to address changing conditions, or by a risk or hazard exposure that is too great to overcome.

F. There is no one-size-fits-all model for adaptation and improved resilience. Adaptation will look different in different communities because risks, judgments about risk, resources, and potential solutions differ across groups of people and the places where they live and work. 

G. Actions that increase risks are called maladaptation. For example, maladaptation can occur if infrastructure (like a levee or roadway) or a disaster response program encourages continued development in hazardous areas, leading to higher losses in the event of future disasters. Most often, maladaptation is an unintended consequence.

H. A fair, democratic, and community-based approach to assessing risks and planning adaptation measures can reduce the chances of unintentionally causing more harm to natural systems and the people who are affected by these decisions. Learn more about equity in adaptation

I. Adaptation often requires financial investment in new or enhanced technologies, infrastructure, and education. Investing in adaptation and resilience efforts undertaken by vulnerable populations can contribute to a more equitable future. Learn more about investments in adaptation

The back of a yellow bus with the words “Look, no tailpipe! I'm electric!” painted on it.

This fully electric school bus is part of a new fleet in Virginia and a larger national plan to switch a substantial portion of the nation’s 500,000 school buses to renewable energy. Credit: EPA, Photo by Eric Vance

A. Rapid, deep, and sustained reductions in global emissions of greenhouse gases can still limit global temperature changes to well below 2°C (3.6°F), consistent with the goals of the Paris Agreement. Learn more about climate mitigation

B. Limiting global warming requires net-zero carbon dioxide emissions— where emissions fall to zero or remaining emissions are balanced by removal from the atmosphere. To keep warming to well below 2°C (3.6°F), global carbon dioxide emissions would need to reach net zero by 2050, along with substantial reductions in emissions of all greenhouse gases. Rapid and sustained reductions in methane emissions are one of the fastest ways to limit near-term warming.

C. Reaching and sustaining global net-zero greenhouse gas emissions will result in a gradual decline in warming. However, some long-term responses to warming that have already occurred will continue due to the long lifespan of some greenhouse gases in the atmosphere (for example, sea level rise, ice sheet losses, and ecosystem disruptions). Learn more about the ways to reach net zero

D. Actively removing carbon dioxide from the atmosphere and using natural climate solutions to increase ecosystem carbon sinks can help reach net zero even faster. Scientists, entrepreneurs, and communities are working on ways to remove some of these greenhouse gases. Learn more about carbon dioxide removal

E. Many countries, states, cities, and corporations have set climate mitigation goals and targets that are aligned with limiting warming to 1.5°C (2.7°F). However, current efforts to meet these goals and targets need to be scaled up and expanded to limit global warming, and it remains likely that warming will exceed 1.5°C (2.7°F) during the 21st century. Learn more about climate mitigation at many scales

F. Technologies and approaches that are already available can dramatically reduce greenhouse gas emissions from the highest-emitting sectors. These include improvements in energy efficiency, electricity generation from solar and wind energy, electrification of transportation and heating, less emissions-intensive diets, and protection and restoration of forests and ecosystems. Learn more about options to reduce emissions now

G. Some other greenhouse gas emissions, such as those from jet fuel, cement production, and certain industrial processes, cannot be avoided at a large scale with current technologies. To reach net-zero emissions, additional mitigation options and approaches, such as natural and engineered carbon dioxide removal and low-carbon fuels, may need to be explored. 

H. Actions by governments, businesses, organizations, and individuals can support net-zero emissions goals. Lean more about efforts to reduce emissions

Student’s artwork focused on human pollution and solutions. Pencil drawing shows a globe, with the top half in bright greens and blues and featuring solar panels and wind turbines, and the bottom half obscured by a yellowish haze, with cars and factories spewing smoke. In the lower half a large human hand holds an eraser that is clearing up the pollution, while in the top half another hand is drawing with a pencil.

Artist’s statement: “In my art, I try to convey that we can help reverse the effects of climate change. One hand is erasing the pollution caused by industrialization the world over, and the other is redrawing actions to restore the Earth’s beauty. I have always tried to help out the Earth, through stream clean ups and more. I hope people learn from my art that they can help change the world by just doing simple things like driving less, not littering, and maybe even setting up solar panels or wind turbines. The effects of climate change are only in our hands, so we should do whatever we can to help.” Credit: Ritika S., Art x Climate, Redrawing the Earth (2023, colored pencil)

A. How quickly global carbon dioxide emissions reach net zero will largely determine how much warming can be limited. Every increment of warming that the world avoids reduces the risks and harmful impacts of climate change, including loss of life. Acting sooner on mitigation and adaptation will reduce future warming and associated impacts and produce environmental, economic, and social benefits. Learn more about the choices that will determine the future

B. Parties to the Paris Agreement set a collective goal to limit global warming to well below 2°C (3.6°F) above preindustrial levels and to pursue efforts to limit warming to 1.5°C (2.7°F) above preindustrial levels. To meet this goal, countries, companies, communities, and organizations need to implement more ambitious mitigation actions. Learn more about international climate goals

C. Even if the world rapidly reaches net-zero emissions, the United States will continue to face climate impacts and risks. Adequately addressing these risks involves longer-term inclusive planning, investments in transformative adaptation, and mitigation approaches that consider equity and justice. Learn more about potential benefits of climate action  

D. Inclusive, equitable, and just approaches to climate action in the United States can help reduce risks, improve outcomes, encourage ambitious mitigation, and create opportunities to overcome past environmental inequities. Supporting Indigenous and local knowledge holders and their practices can lead to more resilient and sustainable outcomes. Learn more about just transitions  

E. Human well-being is dependent on natural and managed ecosystems, which provide crucial functions and resources for nearly everything we eat, make, and do. Nature-based solutions can provide climate adaptation and mitigation benefits, protecting ecosystems and the services they provide while also benefiting people. Learn more about ecosystems, ecosystem services, and biodiversity

F. Improving climate education, increasing access to information, and communicating effectively can improve people’s understanding of risks and their ability to address them.

G. Taking constructive climate action together with other people helps reduce eco-anxiety and builds a stronger sense of community. Learn more about climate change and mental health 

H. Substantially reducing human-caused greenhouse gas emissions and taking actions to adapt and build resilience involves all levels of society. Actions by individuals, organizations, businesses, and governments can support adaptation and mitigation goals. In the United States, states, cities, Tribes, companies, and other organizations have adopted a range of climate actions and policies. Learn more about mitigation and adaptation actions underway now  

I. Millions of people all over the world are already working to make a safer, healthier, more prosperous, more just, and more stable world for all through climate action. Learn more about how people are mitigating and adapting to climate change.

United Nations Sustainable Development Logo

Climate Action

what is climate change in essay

Tackling Climate Change

Goal 13 calls for urgent action to combat climate change and its impacts. It is intrinsically linked to all 16 of the other Goals of the 2030 Agenda for Sustainable Development. To address climate change, countries adopted the Paris Agreement to limit global temperature rise to well below 2 degrees Celsius. Learn more about Goal 13 , and for the latest United Nations climate news, visit un.org/climatechange .

Paris Agreement FAQ

Why we need action

Climate change is now affecting every country on every continent. It is disrupting national economies and affecting lives, costing people, communities and countries dearly today and even more tomorrow.

People are experiencing the significant impacts of climate change, which include changing weather patterns, rising sea level, and more extreme weather events. The greenhouse gas emissions from human activities are driving climate change and continue to rise. They are now at their highest levels in history. Without action, the world’s average surface temperature is projected to rise over the 21st century and is likely to surpass 3 degrees Celsius this century—with some areas of the world expected to warm even more. The poorest and most vulnerable people are being affected the most.

A race we can win

Affordable, scalable solutions are now available to enable countries to leapfrog to cleaner, more resilient economies. The pace of change is quickening as more people are turning to renewable energy and a range of other measures that will reduce emissions and increase adaptation efforts.

But climate change is a global challenge that does not respect national borders. Emissions anywhere affect people everywhere. It is an issue that requires solutions that need to be coordinated at the international level and it requires international cooperation to help developing countries move toward a low-carbon economy.

To address climate change, countries adopted the  Paris Agreement at the  COP21 in Paris  on 12 December 2015. The Agreement entered into force less than a year later. In the agreement, all countries agreed to work to limit global temperature rise to well below 2 degrees Celsius, and given the grave risks, to strive for 1.5 degrees Celsius.

Implementation of the Paris Agreement is essential for the achievement of the  Sustainable Development Goals , and provides a roadmap for climate actions that will reduce emissions and build climate resilience.

IPCC Climate Report 2022

what is climate change in essay

The Working Group III report provides an updated global assessment of climate change mitigation progress and pledges, and examines the sources of global emissions. It explains developments in emission reduction and mitigation efforts, assessing the impact of national climate pledges in relation to long-term emissions goals. Read more here .

The Paris Agreement on climate change

The UN continues to encourage all stakeholders to take action toward reducing the impacts of climate change.

COP25: Madrid, 2019

what is climate change in essay

The conference was designed to take the next crucial steps in the UN climate change process. The conference served to build ambition ahead of 2020, the year in which countries have committed to submit new and updated national climate action plans. Crucial climate action work was taken forward in areas including finance, the transparency of climate action, forests and agriculture, technology, capacity building, loss and damage, indigenous peoples, cities, oceans and gender.

COP24: Katowice, 2018

what is climate change in essay

The 2018 UN Climate Conference took place in Katowice, Poland from 2-14 December.

The conference finalized the rules for implementation of the Paris Agreement on climate change under the Paris Agreement work programme (PAWP). It also included a number of high-level events, mandated events, action events and roundtables.

COP23: Bonn, 2017

what is climate change in essay

The 2017 UN Climate Conference took place in Bonn, Germany, from 6-18 November. Leaders of national governments, cities, states, business, investors, NGOs and civil society gathered to speed up climate action to meet the goals of the Paris Climate Change Agreement.

COP22: Marrakesh, 2016

what is climate change in essay

High-Level Event Towards Entry into Force: 21 September, 2016

what is climate change in essay

Recap of the High-Level Event Towards Entry into Force

Paris Agreement Signing Ceremony, 22 April 2016

Photo: United Nations Paris Climate Agreement Signing Ceremony 22 April 2016

To keep the global spotlight focused on climate change and build on the strong political momentum from Paris, United Nations Secretary-General Ban Ki-moon invited representatives of all countries to sign  the Paris Agreement on climate change   at a special Ceremony at the United Nations Headquarters on 22 April.

Cop21, 12 December 2015

what is climate change in essay

Paris Agreement – Frequently Asked Questions

What is the present status of the paris agreement on climate change.

The Paris Agreement on climate change officially entered into force on 4 November 2016, after 55 countries accounting for 55 per cent of the total global greenhouse gas emissions, deposited their instruments of ratification, acceptance or approval with the UN Secretary-General.

As of June 2020, 195 signatories and 189 countries have joined the Paris Agreement.

What is the next step towards the implementation of the Paris Agreement?

What are the most significant aspects about the new agreement, is this agreement really going to help, what does the agreement require countries to do, what happens if a country doesn’t live up to its commitments would there be any enforcement, developing countries stressed the need for equity and fairness. does the agreement provide that, how can paris get us to the 2 degree—or even 1.5 degree goal, how are climate change and the paris agreement linked with the sustainable development goals, why is it so urgent that we do something now, related news.

what is climate change in essay

Climate crisis: Satellites and AI offer hope for global action, says UN weather agency

By dpicampaigns | 2024-09-18T08:00:00-04:00 18 Sep 2024 |

Amid renewed warnings from leading climate scientists that global warming [...]

what is climate change in essay

World News in Brief: Yemen detainee appeal, Typhoon Yagi impacts, ease asylum seekers’ plight, mpox cash boost

Regional directors from six UN agencies and three non-governmental organizations [...]

what is climate change in essay

Climate change: Ozone layer still well on track for full recovery

By dpicampaigns | 2024-09-16T08:00:00-04:00 16 Sep 2024 |

New evidence in the World Meteorological Organization’s (WMO) annual Ozone [...]

Related Videos

Launch of secretary-general’s youth advisory group on climate change – 27 july.

Building on the climate action momentum, the Secretary-General will launch his Youth Advisory Group on Climate Change on 27 July to amplify youth voices and to engage young people in an open and transparent dialogue as the UN gears up to raise ambition and accelerate action to address the climate crisis.

ActNow Climate Campaign – Chef Grace Ramirez

Chef Grace Ramirez talks about sustainability and green hacks in support of the UN's ActNow climate campaign.

Angry Birds 2 PSA in support of the ActNow Climate Campaign

The Department of Global Communications is partnering with Sony Pictures Entertainment and the UN Foundation for a second time on an initiative to promote the Sustainable Development Goal 13 – take urgent action against climate change and its impacts.

Jump to navigation

UN

All UN missions

  • UNSOM Offices
  • Top Stories
  • News Stories
  • Feature Stories
  • Communiqués
  • Newsletters and Round-ups of UN Activities
  • Media Contacts
  • Political Affairs
  • Integrated Electoral Support
  • UNSOM Police
  • Joint Justice and Corrections Service
  • Security Sector Reform
  • Defence Sector Reform
  • United Nations Mine Action Service (UNMAS)
  • Human Rights and Protection Group
  • Gender Equality and Women’s Empowerment
  • Prevention and Countering of Violent Extremism
  • Strategic Communications and Public Affairs
  • Donor Coordination
  • Community Recovery and Extension of State Authority and Accountability
  • Environment and Climate Security
  • Youth Empowerment
  • Secretary-General's Reports
  • Security Council Resolutions
  • Statements to UN Security Council
  • Key Documents
  • Other Documents

UN calls for urgent climate change adaptation in Somalia

what is climate change in essay

Mogadishu  – Somalia is currently one of the countries most affected by the climate crisis which negatively impacts livelihood options, exacerbates displacement of populations, and increases inequality and insecurity.

In response to these climate-related challenges, the United Nations (UN) has called for a significant shift in Somalia's approach to climate change, during a symposium held today in Mogadishu. The focus is on enhancing investment in climate adaptation and resilience to protect the livelihoods of millions.

what is climate change in essay

“2023 started with the cumulation of the worst drought that the country has ever seen in half a century that impacted millions of people, and ended with the worst flooding in 100 years," said George Conway, Deputy Special Representative of the Secretary-General, UN Resident and Humanitarian Coordinator for Somalia, in his opening remarks at the symposium.

“Humanitarian responses are important to save lives. But if we are not making the investment in adaptation, in resilience building, then the levels of chronic vulnerability and risk will continue to rise for the country,” he added.

what is climate change in essay

The UN-supported symposium, organised by the Institute of Climate and Environment (ICE) at SIMAD University and the Somali Federal Ministry of Environment and Climate Change under the theme "Fostering resilience, strengthening adaptation, and uniting for action," brought together government officials, private sector representatives, civil society, academia, youth, and international organisations.

Climate crises are crises of human rights

The unprecedented climate-related crises that Somalia faces require urgent humanitarian responses, which are important as they save lives.

However, given the magnitude and recurrence of these crises, emergency interventions are not sufficient anymore.

Without an investment in adaptation, in resilience-building, the levels of chronic vulnerability and risk will continue to rise in the country.

what is climate change in essay

"The climate crisis is a crisis of human rights, of the right to life, the right to food, the right to health, the right to water and the right to sanitation," said Mr. Conway.

“We need to put human rights very much at the centre of the discussion and the work that we do for Somalia on the climate agenda,” he added.

Mr. Conway called for a change in the policy dialogues that can shape the way Somalia deals with climate change. He stressed the need for inclusion, representation and participation of those groups that were less present in such fora – women, marginalised groups, persons with disabilities.

what is climate change in essay

Young climate activist Sucdi Nor is familiar with the disproportionate effects of climate change on women, particularly for those working in agriculture, which is a primary source of income for many families. 

“Droughts and floods severely limit agricultural productivity, leading to loss of income and reduced purchasing power for many,” Ms. Nor explained.

The Federal Minister of Youth and Sports, Mohamed Bare Mohamud, in his remarks underscored the critical role that youth play in combating climate change. He noted that the active participation of young people in climate initiatives and their contributions to community awareness efforts are essential.

what is climate change in essay

Collective efforts for adaptation

Looking ahead, the Somali government has committed to several key actions, including the establishment of a national climate resilience plan and a climate financing framework to ensure that discussions translate into tangible improvements.

The Somali Federal State Minister of Environment and Climate Change, Ahmed Omar Mohamed, announced at today’s symposium an ambitious plan to plant 10 million trees over the coming years, with 400,000 already planted.

what is climate change in essay

Additionally, Somalia is set to ban single-use plastics starting in October.

“Climate change is not a distant issue. it requires our immediate attention. Together, we can make Somalia a greener place,” said Minister Ahmed Omar.

These actions are part of a significant shift in thinking and in the practical ways climate change is tackled. The responses must focus on increased investment in climate adaptation and resilience-building.

what is climate change in essay

The symposium ended with the adoption of a position paper presented by ICE, which outlines climate change policy recommendations for the Somali government and international stakeholders.

The Director of ICE, Mohamed Okash, emphasised the need for rights-based interventions led by local communities and innovative mechanisms to attract climate finance for national adaptation programs.

“We must prioritise adaptation strategies that empower local communities and ensure their voices are heard in the climate dialogue,” Mr. Okash concluded.

UN launches month-long training to reduce the threat of explosive devices in Somalia

Mogadishu – As Somalia advances in its journey towards self-reliance and sustainability in national security, the threat of Improvised Explosive Devices (IEDs) remains critical.

what is climate change in essay

Mogadishu – Somali journalists have a tough job.

Their work is fundamental for sustainable development, human rights protection and democratic consolidation, but it can be a dangerous and sometimes deadly profession.

what is climate change in essay

Using the Toulmin Method

How it works

Stephen Toulmin, a British philosopher, came up with a way to analyze and build arguments that’s pretty well-respected and used in many areas. This approach, called the Toulmin Method, helps break down arguments into smaller parts so you can better understand the logic and structure behind them. It’s handy in both school and work settings where strong arguments matter a lot. By splitting arguments into six main components—claim, grounds, warrant, backing, qualifier, and rebuttal—people can really dig into the strength and validity of any argument.

If you want to get better at writing arguments and thinking critically, knowing the Toulmin Method is a must.

The first part of the Toulmin Method is the claim. This is basically the main point or statement you’re trying to prove. Think of it as the backbone of your argument. The claim needs to be clear and specific so everyone knows exactly what you’re saying. For example, if you’re arguing that renewable energy is better than fossil fuels, your claim might be that renewable energy is more sustainable and better for the environment. This sets up the rest of your argument and gives a clear path for the evidence and reasoning that follows.

Next up is the grounds. This is all the evidence and facts that back up your claim. It could be anything from data and stats to expert opinions. The grounds are super important because they support your claim. Without good evidence, your claim won’t hold much weight. In our renewable energy example, the grounds might be data showing that using solar and wind power cuts down on greenhouse gas emissions, and studies that highlight the long-term economic benefits of renewable energy. Strong grounds make your argument much more convincing.

The third part is the warrant. This connects your claim and grounds, explaining why the evidence supports your claim. The warrant is often tricky because you have to spell out the logic behind your argument. For renewable energy, the warrant might be that cutting down on greenhouse gases is crucial for fighting climate change and protecting the environment. This ties the evidence about emission reductions to the claim that renewable energy is better for sustainability.

Backing is the next part, and it adds extra support to your warrant. This could be more evidence, explanations, or reasoning that strengthens your warrant. In the renewable energy case, backing might include scientific studies showing the link between greenhouse gases and climate change, plus expert views on why switching to renewable energy is important. By adding backing, you make your warrant—and your whole argument—stronger.

Then there’s the qualifier. This shows how strong or certain your claim is. It includes words like “most,” “usually,” “probably,” or “in some cases” to make your claim more realistic. Qualifiers are important because they recognize the complexity of most arguments, making your case more balanced and believable. For renewable energy, a qualifier might be that renewable sources are generally better for the environment, but there are exceptions. Using qualifiers helps you present a more detailed and credible argument, considering possible counterarguments and limitations.

Finally, we have the rebuttal. This part tackles potential counterarguments or objections to your claim. It’s crucial because it shows you’re aware of other viewpoints and can respond to criticism. In the renewable energy example, a rebuttal might address issues like the inconsistency of solar and wind power, the upfront costs of renewable infrastructure, or the environmental impact of making solar panels and wind turbines. By dealing with these counterarguments, you make your overall case stronger and show you have a good grip on the issue.

In conclusion, the Toulmin Method is a great tool for building and analyzing arguments. By breaking things down into six main parts—claim, grounds, warrant, backing, qualifier, and rebuttal—you can get a better handle on the logic and structure of any argument. This method is especially useful in school and work environments where good arguments are key. By mastering the Toulmin Method, you’ll improve your writing and critical thinking skills, making you a better communicator and thinker. Whether you’re making your own argument or evaluating someone else’s, the Toulmin Method gives you a solid way to understand and tackle complex issues.

owl

Cite this page

Using The Toulmin Method. (2024, Sep 17). Retrieved from https://papersowl.com/examples/using-the-toulmin-method/

"Using The Toulmin Method." PapersOwl.com , 17 Sep 2024, https://papersowl.com/examples/using-the-toulmin-method/

PapersOwl.com. (2024). Using The Toulmin Method . [Online]. Available at: https://papersowl.com/examples/using-the-toulmin-method/ [Accessed: 23 Sep. 2024]

"Using The Toulmin Method." PapersOwl.com, Sep 17, 2024. Accessed September 23, 2024. https://papersowl.com/examples/using-the-toulmin-method/

"Using The Toulmin Method," PapersOwl.com , 17-Sep-2024. [Online]. Available: https://papersowl.com/examples/using-the-toulmin-method/. [Accessed: 23-Sep-2024]

PapersOwl.com. (2024). Using The Toulmin Method . [Online]. Available at: https://papersowl.com/examples/using-the-toulmin-method/ [Accessed: 23-Sep-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.

owl

Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

IMAGES

  1. ≫ Global Climate Change Free Essay Sample on Samploon.com

    what is climate change in essay

  2. ≫ Climate Change and Global Warming Issue Free Essay Sample on Samploon.com

    what is climate change in essay

  3. Persuasive Essay Sample: Global Warming

    what is climate change in essay

  4. Climate Change and Global Warming Argumentative Essay on Samploon.com

    what is climate change in essay

  5. ≫ Climate Change Free Essay Sample on Samploon.com

    what is climate change in essay

  6. ≫ Overcoming Global Warming and Climate Change Free Essay Sample on

    what is climate change in essay

VIDEO

  1. Chapter 1 Overview of Climate Emergency

  2. The Impact Of Climate Change On Agriculture Essay Writing

  3. Essay on Climate Change || Climate Change Essay || Essay Writing

  4. CSS Essay Outline On Global Warming

  5. climate change essay

  6. Global Warming Essay in English

COMMENTS

  1. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, […]

  2. Climate Change Essay for Students and Children

    500+ Words Climate Change Essay. Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways.

  3. Essay on Climate Change: Check Samples in 100, 250 Words

    Climate Change Sample Essay 250 Words. Climate change represents a pressing global challenge that demands immediate attention and concerted efforts. Human activities, primarily the burning of fossil fuels and deforestation, have significantly increased the concentration of greenhouse gases in the atmosphere. This results in a greenhouse effect ...

  4. Climate Change

    Climate change is the long-term alteration of temperature and typical weather patterns in a place. Climate change could refer to a particular location or the planet as a whole. Climate change may cause weather patterns to be less predictable. These unexpected weather patterns can make it difficult to maintain and grow crops in regions that rely ...

  5. Climate Change Essay for Students in English

    Climate Change Essay: Go through the 500+ Words Essay on Climate Change and get ideas on how to write an effective essay on issues related to the environment. Boost your essay writing skills to score high marks in the English exam and also participate in various essay writing competitions.

  6. Global warming

    Global warming, the phenomenon of rising average air temperatures near Earth's surface over the past 100 to 200 years. Although Earth's climate has been evolving since the dawn of geologic time, human activities since the Industrial Revolution have a growing influence over the pace and extent of climate change.

  7. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil ...

  8. Climate Explained: Introductory Essays About Climate Change Topics

    Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it's cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

  9. What Is Climate Change?

    Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun's activity or large volcanic eruptions. But since the 1800s ...

  10. Causes and Effects of Climate Change

    As greenhouse gas emissions blanket the Earth, they trap the sun's heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history ...

  11. Climate Change Assay: A Spark Of Change

    Bahçeşehir College is committed to increasing students' awareness of the changing world we live in. This climate change essay competition saw many students submitting well thought out pieces of writing. These essays were marked on their format, creativity, organisation, clarity, unity/development of thought, and grammar/mechanics.

  12. Our Future Is Now

    Climate change is defined as "a pattern of change affecting global or regional climate," based on "average temperature and rainfall measurements" as well as the frequency of extreme weather events. 1 These varied temperature and weather events link back to both natural incidents and human activity. 2 Likewise, the term global warming ...

  13. The Science of Climate Change Explained: Facts, Evidence and Proof

    Climate denialists often point to these natural climate changes as a way to cast doubt on the idea that humans are causing climate to change today. However, that argument rests on a logical fallacy.

  14. What is climate change and why does it matter?

    The main driver of current climate change is the emission of greenhouse gases, most importantly carbon dioxide and methane. These are primarily released when fossil fuels are burnt. Meat and dairy production, producing cement and some industrial processes, such as the production and use of fertilisers, also emit greenhouse gases.

  15. Climate change: evidence and causes

    Fingerprinting is a powerful way of studying the causes of climate change. Different influences on climate lead to different patterns seen in climate records. This becomes obvious when scientists probe beyond changes in the average temperature of the planet and look more closely at geographical and temporal patterns of climate change.

  16. The Causes of Climate Change

    In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change, composed of scientific experts from countries all over the world, concluded that it is unequivocal that the increase of CO 2, methane, and nitrous oxide in the atmosphere over the industrial era is the result of human activities and that human influence is the principal driver of many changes observed across the ...

  17. Climate Change: Your Questions About Causes and Effects, Answered

    Climate change is already affecting plants and animals in ways that scientists are racing to understand. One study predicted sudden die offs , with large segments of ecosystems collapsing in waves.

  18. What Causes Climate Change? Human and Natural Causes

    This global warming has, in turn, dramatically altered natural cycles and weather patterns, with impacts that include extreme heat, protracted drought, increased flooding, more intense storms, and ...

  19. Responding to the Climate Threat: Essays on Humanity's Greatest

    Fighting climate change is the ultimate societal challenge, and the difficulty is not just in the wrenching adjustments required to cut greenhouse emissions and to respond to change already under way. A second and equally important difficulty is ensuring widespread public understanding of the natural and social science.

  20. Effects of Climate Change

    Courtney Lindwall. Climate change is our planet's greatest existential threat. If we don't limit greenhouse gas emissions from the burning of fossil fuels, the consequences of rising global ...

  21. Climate Changes, So Should We...

    In conclusion, climate change is the most significant problem facing the world. Global warming is increasing day by day. If we cannot prevent it as soon as possible, our world will face undesirable consequences. Artificial intelligence and machine learning, which have been quite advanced recently, is our immense weapon in the fight against ...

  22. Essential Principles for Understanding and Addressing Climate Change

    The only credible explanation for recent climate change is human activities. Learn more about how natural causes alone do not explain climate change. E. The magnitude and trends of climate change are not the same at all locations on Earth. For example, the land warms faster than the ocean, and the polar regions warm faster than the tropics.

  23. Climate Action

    Tackling Climate Change Goal 13 calls for urgent action to combat climate change and its impacts. It is intrinsically linked to all 16 of the other Goals of the 2030 Agenda for Sustainable ...

  24. UN calls for urgent climate change adaptation in Somalia

    Mogadishu - Somalia is currently one of the countries most affected by the climate crisis which negatively impacts livelihood options, exacerbates displacement of populations, and increases inequality and insecurity.. In response to these climate-related challenges, the United Nations (UN) has called for a significant shift in Somalia's approach to climate change, during a symposium held ...

  25. The Best Climate Policy Puts Carrots Before Sticks

    Economists have long insisted that the only way to cut emissions of carbon dioxide and other greenhouse gases rapidly and at scale is to put a price on them. But while that is true, the key to a successful, politically sustainable climate policy is to ensure that the benefits precede the costs.

  26. Millets: Small Grains, Big Impact in Climate Action

    These changes have had severe consequences for agriculture, including declines in cereal crop yields. Odisha's vulnerability to natural disasters prompted renewed interest in millets, offering insights into mitigating climate change's impact on food production and achieving sustainable development goals (SDGs).

  27. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  28. Using The Toulmin Method

    Essay Example: Stephen Toulmin, a British philosopher, came up with a way to analyze and build arguments that's pretty well-respected and used in many areas. ... In the renewable energy case, backing might include scientific studies showing the link between greenhouse gases and climate change, plus expert views on why switching to renewable ...