psychology

Ability Tests

What are ability tests.

Ability tests, also known as aptitude tests, assess various cognitive abilities such as verbal, numerical, abstract reasoning, spatial awareness, logical reasoning, and problem-solving. These tests are designed to evaluate individuals’ natural talents and potential to learn and succeed in specific areas.

For example, a verbal ability test might assess an individual’s verbal comprehension, fluency, vocabulary, and ability to understand and manipulate words. On the other hand, a numerical ability test might measure one’s numerical reasoning, mathematical skills, and ability to work with numbers accurately.

Types of Ability Tests

There are several types of ability tests, each focusing on different cognitive domains and skills. Some common types include:

  • Verbal Ability Tests: These assess language-related skills, including vocabulary, reading comprehension, and verbal reasoning.
  • Numerical Ability Tests: These evaluate an individual’s aptitude in working with numbers, mathematical problem-solving, and reasoning abilities.
  • Abstract Reasoning Tests: These tests measure an individual’s ability to identify patterns, think logically, and solve abstract problems.
  • Spatial Ability Tests: These assess one’s capacity to visualize and manipulate objects in space, such as mental rotation and spatial visualization.
  • Mechanical Reasoning Tests: These evaluate an individual’s understanding of mechanical concepts, principles, and problem-solving abilities.

Why Are Ability Tests Important?

Ability tests play a crucial role in various settings:

  • Career Selection and Recruitment: Employers use ability tests during the hiring process to identify candidates with the necessary skills and potentials for a specific job role. These tests provide objective and standardized measures to evaluate job applicants’ suitability and compatibility with the required tasks.
  • Educational Assessment: Educational institutions use ability tests to assess students’ aptitude for specific subjects or to identify areas where extra support may be required. These tests help educators tailor their teaching methods and curriculum to meet individual students’ needs.
  • Personal Development: Ability tests can assist individuals in identifying their strengths and areas for improvement. By understanding their natural abilities, individuals can make informed decisions about their career paths, personal goals, and areas to focus on for personal growth.

Key Considerations while using Ability Tests

When using ability tests, it’s important to:

  • Ensure Test Validity: Use tests that have been validated and are recognized by professionals in the field to ensure accurate and meaningful results.
  • Avoid Bias: Ensure tests are fair and unbiased, taking into account cultural and demographic differences, to avoid any form of discrimination.
  • Consider Multiple Factors: Combine ability test results with other assessment measures, such as interviews and work samples, for a comprehensive evaluation.
  • Provide Feedback and Support: Offer feedback to individuals who have taken ability tests to help them understand their results and how they can further develop their skills or seek appropriate support.

In Conclusion

Ability tests provide valuable insights into an individual’s natural talents and potential in specific areas. They are widely used in various fields to assess individuals’ cognitive abilities and inform decision-making processes. By understanding an individual’s strengths and weaknesses, ability tests contribute to effective career selections, educational assessments, and personal development. However, it’s essential to use reliable and validated tests, avoid bias, consider multiple factors, and provide appropriate support to ensure the accurate and fair assessment of an individual’s abilities.

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

problem solving ability test in psychology

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

problem solving ability test in psychology

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research

Associated data.

This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g., convergent thinking to intelligence, divergent thinking to creativity. Knowledge domain and the possibilities it offers cognition are reflected in test results. We argue that (a) comparing results of tests with different problem spaces is more informative when cognition operates in both tests on an identical knowledge domain, and (b) intertwining of abilities related to both constructs can only be expected in tests developed to instigate such a process. Test features should guarantee that abilities can contribute to self-generated and goal-directed processes bringing forth solutions that are both new and applicable. We propose and discuss a test example that was developed to address these issues.

The definition of the construct a test is to measure is most important in test construction and application, because cognitive processes reflect the possibilities a task offers. For instance, a test constructed to assess intelligence will operationalize the definition of this construct, being, in short, finding the correct answer. Also, the definition of a construct becomes important when selecting tests for the confirmation of a specific hypothesis. One can only find confirmation for a hypothesis if the chosen task instigates the necessary cognitive operations. For instance, in trying to confirm the assumed intertwining of certain cognitive abilities (e.g., convergent thinking and divergent thinking), tasks should be applied that have shown to yield the necessary cognitive process.

The second test feature, problem space , determines the degrees of freedom cognition has to its disposal in solving a problem. For instance, cognition will go through a wider search path when problem constraints are less well defined and, consequently, data will differ accordingly.

The third test feature, knowledge domain , is important when comparing results from two different tests. When tests differ in problem space, it is not advisable they should differ in knowledge domain. For instance, when studying the differences in cognitive abilities between tests constructed to asses convergent thinking (mostly defined problem space) and divergent thinking (mostly ill-defined problem space), in general test practice, both tests also differ in knowledge domain. Hence, data will reflect cognition operating not only in different problem spaces, but also operating on different knowledge domains, which makes the interpretation of results ambiguous.

The proposed approach for test development and test application holds the promise of, firstly, studying cognitive abilities in different problem spaces while operating on an identical knowledge domain. Although cognitions’ operations have been studied extensively and superbly in both contexts separately, they have rarely been studied in test situations where one or the other test feature is controlled for. The proposed approach also presents a unique method for studying thinking processes in which cognitive abilities intertwine. On the basis of defined abilities, tasks can be developed that have a higher probability of yielding the hypothesized results.

The construct of intelligence is defined as the ability to produce the single best (or correct) answer to a clearly defined question, such as a proof to a theorem ( Simon, 1973 ). It may also be seen as a domain-general ability ( g -factor; Spearman, 1904 ; Cattell, 1967 ) that has much in common with meta cognitive functions, such as metacognitive knowledge, metacognitive monitoring, and metacognitive control ( Saraç et al., 2014 ).

The construct of creativity, in contrast, is defined as the ability to innovate and move beyond what is already known ( Wertheimer , 1945/1968 ; Ghiselin , 1952/1985 ; Vernon, 1970 ). In other words, it emphasizes the aspect of innovation. This involves the ability to consider things from an uncommon perspective, transcend the old order ( Ghiselin , 1952/1985 ; Chi, 1997 ; Ward, 2007 ), and explore loosely associated ideas ( Guilford, 1950 ; Mednick, 1962 ; Koestler, 1964 ; Gentner, 1983 ; Boden, 1990 ; Christensen, 2007 ). Creativity could also be defined as the ability to generate a solution to problems with ill-defined problem spaces ( Wertheimer , 1945/1968 ; Getzels and Csikszentmihalyi, 1976 ). In this sense it involves the ability to identify problematic aspects of a given situation ( Ghiselin , 1952/1985 ) and, in a wider sense, the ability to define completely new problems ( Getzels, 1975 , 1987 ).

Guilford (1956) introduced the constructs of convergent thinking and divergent thinking abilities. Both thinking abilities are important because they allow us insights in human problem solving. On the basis of their definitions convergent and divergent thinking help us to structurally study human cognitive operations in different situations and over different developmental stages. Convergent thinking is defined as the ability to apply conventional and logical search, recognition, and decision-making strategies to stored information in order to produce an already known answer ( Cropley, 2006 ). Divergent thinking, by contrast, is defined as the ability to produce new approaches and original ideas by forming unexpected combinations from available information and by applying such abilities as semantic flexibility, and fluency of association, ideation, and transformation ( Guilford, 1959 , as cited in Cropley, 2006 , p. 1). Divergent thinking brings forth answers that may never have existed before and are often novel, unusual, or surprising ( Cropley, 2006 ).

Guilford (1967) introduced convergent and divergent thinking as part of a set of five operations that apply in his Structure of Intellect model (SOI model) on six products and four kinds of content, to produce 120 different factors of cognitive abilities. With the SOI model Guilford wanted to give the construct of intelligence a comprehensive model. He wanted the model to include all aspects of intelligence, many of which had been seriously neglected in traditional intelligence testing because of a persistent adherence to the belief in Spearman’s g ( Guilford, 1967 , p. vii). Hence, Guilford envisaged cognition to embrace, among other abilities, both convergent and divergent thinking abilities. After these new constructs were introduced and defined, tests for convergent and divergent thinking emerged. Despite the fact that Guilford reported significant loadings of tests for divergent production on tests constructed to measure convergent production ( Guilford, 1967 , p. 155), over the years, both modes of thinking were considered as separate identities where convergent thinking tests associated with intelligence and divergent thinking tests with creativity ( Cropley, 2006 ; Shye and Yuhas, 2004 ). Even intelligence tests that assess aspects of intelligence that supposedly reflect creative abilities do not actually measure creativity ( Kaufman, 2015 ).

The idea that both convergent and divergent thinking are important for solving problems, and that intelligence helps in the creative process, is not really new. In literature we find models of the creative process that define certain stages to convergent and divergent thinking; the stages of purposeful preparation at the start and those of critical verification at the end of the process, respectively ( Wallas, 1926 ; Webb Young , 1939/2003 ). In this view, divergent thinking enables the generation of new ideas whereas the exploratory activities of convergent thinking enable the conversion of ideas into something new and appropriate ( Cropley and Cropley, 2008 ).

We argue that studying the abilities of divergent and convergent thinking in isolation does not suffice to give us complete insight of all possible aspects of human problem solving, its constituent abilities and the structure of its processes. Processes that in a sequence of thoughts and actions lead to novel and adaptive productions ( Lubart, 2001 ) are more demanding of cognition for understanding the situation at hand and planning a path to a possible solution, than abilities involved in less complex situations ( Jaušovec, 1999 ). Processes that yield self-generated and goal-directed thought are the most complex cognitive processes that can be studied ( Beaty et al., 2016 ). Creative cognition literature is moving toward the view that especially in those processes that yield original and appropriate solutions within a specific context, convergent and divergent abilities intertwine ( Cropley, 2006 ; Ward, 2007 ; Gabora, 2010 ).

The approach of intertwining cognitive abilities is also developed within cognitive neuroscience by focusing on the intertwining of brain networks ( Beaty et al., 2016 ). In this approach divergent thinking relates to the default brain network. This network operates in defocused or associative mode of thought yielding spontaneous and self-generated cognition ( Beaty et al., 2015 ). Convergent thinking relates to the executive control network operating in focused or analytic modes of thought, yielding updating, shifting, and inhibition ( Benedek et al., 2014 ). Defocused attention theory ( Mendelssohn, 1976 ) states that less creative individuals operate with a more focused attention than do creative individuals. This theory argues that e.g., attending to two things at the same time, might result in one analogy, while attending to four things might yield six analogies ( Martindale, 1999 ).

In the process of shifting back and forth along the spectrum between associative and analytic modes of thinking, the fruits of associative thought become ingredients for analytic thought processes, and vice versa ( Gabora, 2010 ). In this process, mental imagery is involved as one sensory aspect of the human ability to gather and process information ( Jung and Haier, 2013 ). Mental imagery is fed by scenes in the environment that provide crucial visual clues for creative problem solving and actuates the need for sketching ( Verstijnen et al., 2001 ).

Creative problem solving processes often involve an interactive relationship between imagining, sketching, and evaluating the result of the sketch ( van Leeuwen et al., 1999 ). This interactive process evolves within a type of imagery called “visual reasoning” where forms and shapes are manipulated in order to specify the configurations and properties of the design entities ( Goldschmidt, 2013 ). The originality of inventions is predicted by the application of visualization, whereas their practicality is predicted by the vividness of imagery ( Palmiero et al., 2015 ). Imaginative thought processes emerge from our conceptual knowledge of the world that is represented in our semantic memory system. In constrained divergent thinking, the neural correlates of this semantic memory system partially overlap with those of the creative cognition system ( Abraham and Bubic, 2015 ).

Studies of convergent and divergent thinking abilities have yielded innumerable valuable insights on the cognitive and neurological aspects involved, e.g., reaction times, strategies, brain areas involved, mental representations, and short and long time memory components. Studies on the relationship between both constructs suggest that it is unlikely that individuals employ similar cognitive strategies when solving more convergent than more divergent thinking tasks ( Jaušovec, 2000 ). However, to arrive at a quality formulation the creative process cannot do without the application of both, convergent and divergent thinking abilities (e.g., Kaufmann, 2003 ; Runco, 2003 ; Sternberg, 2005 ; Dietrich, 2007 ; Cropley and Cropley, 2008 ; Silvia et al., 2013 ; Jung, 2014 ).

When it is our aim to study the networks addressed by the intertwining of convergent and divergent thinking processes that are considered to operate when new, original, and yet appropriate solutions are generated, then traditional thinking tests like intelligence tests and creativity tests are not appropriate; they yield processes related to the definition of one or the other type of construct.

Creative Reasoning Task

According to the new insights gained in cognition research, we need tasks that are developed with the aim to instigate precisely the kind of thinking processes we are looking for. Tasks should also provide a method of scoring independently the contribution of convergent and divergent thinking. As one possible solution for such tasks we present the Creative Reasoning Task (CRT; Jaarsveld, 2007 ; Jaarsveld et al., 2010 , 2012 , 2013 ).

The CRT presents participants with an empty 3 × 3 matrix and asks them to fill it out, as original and complex as possible, by creating components and the relationships that connect them. The created matrix can, in principle, be solved by another person. The creation of components is entirely free, as is the generation of the relationships that connects them into a completed pattern. Created matrices are scored with two sub scores; Relations , which scores the logical complexity of a matrix and is, therefore, considered a measure for convergent thinking, and Components and Specifications , which scores the originality, fluency, and flexibility and, therefore, is considered an indication for divergent thinking (for a more detailed description of the score method, see Appendix 1 in Supplementary Material).

Psychometric studies with the CRT showed, firstly, that convergent and divergent thinking abilities apply within this task and can be assessed independently. The CRT sub score Relations correlated with the Standard Progressive Matrices test (SPM) and the CRT sub score Components and Specifications correlated with a standard creativity test (TCT–DP, Test of Creative Thinking–Drawing Production; Urban and Jellen, 1995 ; Jaarsveld et al., 2010 , 2012 , 2013 ). Studies further showed that, although a correlation was observed for the intelligence and creativity test scores, no correlation was observed between the CRT sub scores relating to intelligent and creative performances ( Jaarsveld et al., 2012 , 2013 ; for further details about the CRT’s objectivity, validity, and reliability, see Appendix 2 in Supplementary Material).

Reasoning in creative thinking can be defined as the involvement of executive/convergent abilities in the inhibition of ideas and the updating of information ( Benedek et al., 2014 ). Jung (2014) describes a dichotomy for cognitive abilities with at one end the dedicated system that relies on explicit and conscious knowledge and at the other end the improvisational system that relies more upon implicit or unconscious knowledge systems. The link between explicit and implicit systems can actually be traced back to Kris’ psychoanalytic approach to creativity dating from the 1950s. The implicit system refers to Kris’ primary process of adaptive regression, where unmodulated thoughts intrude into consciousness; the explicit system refers to the secondary process, where the reworking and transformation of primary process material takes place through reality-oriented and ego-controlled thinking ( Sternberg and Lubart, 1999 ). The interaction between explicit and implicit systems can be seen to form the basis of creative reasoning, i.e., the cognitive ability to solve problems in an effective and adaptive way. This interaction evolved as a cognitive mechanism when human survival depended on finding effective solutions to both common and novel problem situations ( Gabora and Kaufman, 2010 ). Creative reasoning solves that minority of problems that are unforeseen and yet of high adaptability ( Jung, 2014 ).

Hence, common tests are insufficient when it comes to solving problems that are unforeseen and yet of high adaptability, because they present problems that are either unforeseen and measure certain abilities contained in the construct of creativity or they address adaptability and measure certain abilities contained in the construct of intelligence. The CRT presents participants with a problem that they could not have foreseen; the form is blank and offers no stimuli. All tests, even creativity tests, present participants with some kind of stimuli. The CRT addresses adaptability; to invent from scratch a coherent structure that can be solved by another person, like creating a crossword puzzle. Problems, that are unforeseen and of high adaptability, are solved by the application of abilities from both constructs.

Neuroscience of Creative Cognition

Studies in neuroscience showed that cognition operating in ill-defined problem space not only applies divergent thinking but also benefits from additional convergent operations ( Gabora, 2010 ; Jung, 2014 ). Understanding creative cognition may be advanced when we study the flow of information among brain areas ( Jung et al., 2010 ).

In a cognitive neuroscience study with the CRT we focused on the cognitive process evolving within this task. Participants performed the CRT while EEG alpha activity was registered. EEG alpha synchronization in frontal areas is understood as an indication of top-down control ( Cooper et al., 2003 ). When observed in frontal areas, for divergent and convergent thinking tasks, it may not reflect a brain state that is specific for creative cognition but could be attributed to the high processing demands typically involved in creative thinking ( Benedek et al., 2011 ). Top-down control, relates to volitionally focusing attention to task demands ( Buschman and Miller, 2007 ). That this control plays a role in tasks with an ill-defined problem space showed when electroencephalography (EEG) alpha synchronization was stronger for individuals engaged in creative ideation tasks compared to an intelligence related tasks ( Fink et al., 2007 , 2009 ; Fink and Benedek, 2014 ). This activation was also found for the CRT; task related alpha synchronization showed that convergent thinking was integrated in the divergent thinking processes. Analyzes of the stages in the CRT process showed that this alpha synchronization was especially visible at the start of the creative process at prefrontal and frontal sites when information processing was most demanding, i.e., due to multiplicity of ideas, and it was visible at the end of the process, due to narrowing down of alternatives ( Jaarsveld et al., 2015 ).

A functional magnetic resonance imaging (fMRI) study ( Beaty et al., 2015 ) with a creativity task in which cognition had to meet specific constraints, showed the networks involved. The default mode network which drives toward abstraction and metaphorical thinking and the executive control network driving toward certainty ( Jung, 2014 ). Control involves not only maintenance of patterns of activity that represent goals and the means to achieve those ( Miller and Cohen, 2001 ), but also their voluntary suppression when no longer needed, as well as the flexible shift between different goals and mental sets ( Abraham and Windmann, 2007 ). Attention can be focused volitionally by top-down signals derived from task demands and automatically by bottom-up signals from salient stimuli ( Buschman and Miller, 2007 ). Intertwining between top-down and bottom-up attention processes in creative cognition ensures a broadening of attention in free associative thinking ( Abraham and Windmann, 2007 ).

These studies support and enhance the findings of creative cognition research in showing that the generation of original and applicable ideas involves an intertwining between different abilities, networks, and attention processes.

Problem Space

A problem space is an abstract representation, in the mind of the problem solver, of the encountered problem and of the asked for solution ( Simon and Newell, 1971 ; Simon, 1973 ; Hayes and Flowers, 1986 ; Kulkarni and Simon, 1988 ; Runco, 2007 ). The space that comes with a certain problem can, according to the constraints that are formulated for the solution, be labeled well-defined or ill-defined ( Simon and Newell, 1971 ). Consequently, the original problems are labeled closed and open problems, respectively ( Jaušovec, 2000 ).

A problem space contains all possible states that are accessible to the problem solver from the initial state , through iterative application of transformation rules , to the goal state ( Newell and Simon, 1972 ; Anderson, 1983 ). The initial state presents the problem solver with a task description that defines which requirements a solution has to answer. The goal state represents the solution. The proposed solution is a product of the application of transformation rules (algorithms and heuristics) on a series of successive intermediate solutions. The proposed solution is also a product of the iterative evaluations of preceding solutions and decisions based upon these evaluations ( Boden, 1990 ; Gabora, 2002 ; Jaarsveld and van Leeuwen, 2005 ; Goldschmidt, 2014 ). Whether all possible states need to be passed through depends on the problem space being well or ill-defined and this, in turn, depends on the character of the task descriptions.

When task descriptions clearly state which requirements a solution has to answer then the inferences made will show little idiosyncratic aspects and will adhere to the task constraints. As a result, fewer options for alternative paths are open to the problem solver and search for a solution evolves in a well-defined space. Vice versa, when task or problem descriptions are fuzzy and under specified, the problem solver’s inferences are more idiosyncratic; the resulting process will evolve within an ill-defined space and will contain more generative-evaluative cycles in which new goals are set, and the cycle is repeated ( Dennett, 1978 , as cited in Gabora, 2002 , p. 126).

Tasks that evolve in defined problem space are, e.g., traditional intelligence tests (e.g., Wechsler Adult Intelligence Scale, WAIS; and SPM, Raven , 1938/1998 ). The above tests consist of different types of questions, each testing a different component of intelligence. They are used in test practice to assess reasoning abilities in diverse domains, such as, abstract, logical, spatial, verbal, numerical, and mathematical domains. These tests have clearly stated task descriptions and each item has one and only one correct solution that has to be generated from memory or chosen from a set of alternatives, like in multiple choice formats. Tests can be constructed to assess crystallized or fluid intelligence. Crystallized intelligence represents abilities acquired through learning, practice, and exposure to education, while fluid intelligence represents a more basic capacity that is valuable to reasoning and problem solving in contexts not necessarily related to school education ( Carroll, 1982 ).

Tasks that evolve in ill-defined problem space are, e.g., standard creativity tests. These types of test ask for a multitude of ideas to be generated in association with a given item or situation (e.g., “think of as many titles for this story”). Therefore, they are also labeled as divergent thinking test. Although they assess originality, fluency, flexibility of responses, and elaboration, they are not constructed, however, to score appropriateness or applicability. Divergent thinking tests assess one limited aspect of what makes an individual creative. Creativity depends also on variables like affect and intuition; therefore, divergent thinking can only be considered an indication of an individual’s creative potential ( Runco, 2008 ). More precisely, divergent thinking explains just under half of the variance in adult creative potential, which is more than three times that of the contribution of intelligence ( Plucker, 1999 , p. 103). Creative achievement , by contrast, is commonly assessed by means of self-reports such as biographical questionnaires in which participants indicate their achievement across various domains (e.g., literature, music, or theater).

Studies with the CRT showed that problem space differently affects processing of and comprehension of relationships between components. Problem space did not affect the ability to process complex information. This ability showed equal performance in well and ill-defined problem spaces ( Jaarsveld et al., 2012 , 2013 ). However, problem space did affect the comprehension of relationships, which showed in the different frequencies of relationships solved and created ( Jaarsveld et al., 2010 , 2012 ). Problem space also affected the neurological activity as displayed when individuals solve open or closed problems ( Jaušovec, 2000 ).

Problem space further affected trends over grade levels of primary school children for relationships solved in well-defined and applied in ill-defined problem space. Only one of the 12 relationships defined in the CRT, namely Combination, showed an increase with grade for both types of problem spaces ( Jaarsveld et al., 2013 ). In the same study, cognitive development in the CRT showed in the shifts of preference for a certain relationship. These shifts seem to correspond to Piaget’s developmental stages ( Piaget et al., 1977 ; Siegler, 1998 ) which are in evidence in the CRT, but not in the SPM ( Jaarsveld et al., 2013 ).

Design Problems

A sub category of problems with an ill-defined problem space are represented by design problems. In contrast to divergent thinking tasks that ask for the generation of a multitude of ideas, in design tasks interim ideas are nurtured and incrementally developed until they are appropriate for the task. Ideas are rarely discarded and replaced with new ideas ( Goel and Pirolli, 1992 ). The CRT could be considered a design problem because it yields (a) one possible solution and (b) an iterative thinking process that involves the realization of a vague initial idea. In the CRT a created matrix, which is a closed problem, is created within an ill-defined problem space. Design problems can be found, e.g., in engineering, industrial design, advertising, software design, and architecture ( Sakar and Chakrabarti, 2013 ), however, they can also be found in the arts, e.g., poetry, sculpting, and dance geography.

These complex problems are partly determined by unalterable needs, requirements and intentions but the major part of the design problem is undetermined ( Dorst, 2004 ). This author points out that besides containing an original and a functional value, these types of problems contain an aesthetic value. He further states that the interpretation of the design problem and the creation and selection of possible suitable solutions can only be decided during the design process on the basis of proposals made by the designer.

In design problems the generation stage may be considered a divergent thinking process. However, not in the sense that it moves in multiple directions or generates multiple possibilities as in a divergent thinking tests, but in the sense that it unrolls by considering an initially vague idea from different perspectives until it comes into focus and requires further processing to become viable. These processes can be characterized by a set of invariant features ( Goel and Pirolli, 1992 ), e.g., structuring. iteration , and coherence .

Structuring of the initial situation is required in design processes before solving can commence. The problem contains little structured and clear information about its initial state and about the requirements of its solution. Therefore, design problems allow or even require re-interpretation of transformation rules; for instance, rearranging the location of furniture in a room according to a set of desirable outcomes. Here one uncovers implicit requirements that introduce a set of new transformations and/or eliminate existing ones ( Barsalou, 1992 ; Goel and Pirolli, 1992 ) or, when conflicting requirements arise, one creates alternatives and/or introduces new trade-offs between the conflicting constraints ( Yamamoto et al., 2000 ; Dorst, 2011 ).

A second aspect of design processes is their iterative character. After structuring and planning a vague idea emerges, which is the result of the merging of memory items. A vague idea is a cognitive structure that, halfway the creative process is still ill defined and, therefore, can be said to exist in a state of potentiality ( Gabora and Saab, 2011 ). Design processes unroll in an iterative way by the inspection and adjustment of the generated ideas ( Goldschmidt, 2014 ). New meanings are created and realized while the creative mind imposes its own order and meaning on the sensory data and through creative production furthers its own understanding of the world ( Arnheim , 1962/1974 , as cited in Grube and Davis, 1988 , pp. 263–264).

A third aspect of design processes is coherence. Coherence theories characterize coherence in, for instance, philosophical problems and psychological processes, in terms of maximal satisfaction of multiple constraints and compute coherence by using, a.o., connectionist algorithms ( Thagard and Verbeurgt, 1998 ). Another measure of coherence is characterized as continuity in design processes. This measure was developed for a design task ( Jaarsveld and van Leeuwen, 2005 ) and calculated by the occurrence of a given pair of objects in a sketch, expressed as a percentage of all the sketches of a series. In a series of sketches participants designed a logo for a new soft drink. Design series strong in coherence also received a high score for their final design, as assessed by professionals in various domains. Indicating that participants with a high score for the creative quality of their final sketch seemed better in assessing their design activity in relation to the continuity in the process and, thereby, seemed better in navigating the ill-defined space of a design problem ( Jaarsveld and van Leeuwen, 2005 ). In design problems the quality of cognitive production depends, in part, on the abilities to reflect on one’s own creative behavior ( Boden, 1996 ) and to monitor how far along in the process one is in solving it ( Gabora, 2002 ). Hence, design problems are especially suited to study more complex problem solving processes.

Knowledge Domain

Knowledge domain represents disciplines or fields of study organized by general principles, e.g., domains of various arts and sciences. It contains accumulated knowledge that can be divided in diverse content domains, and the relevant algorithms and heuristics. We also speak of knowledge domains when referring to, e.g., visuo-spatial and verbal domains. This latter differentiation may refer to the method by which performance in a certain knowledge domain is assessed, e.g., a visuo-spatial physics task that assesses the content domain of the workings of mass and weights of objects.

In comparing tests results, we should keep in mind that apart from reflecting cognitive processes evolving in different problem spaces, the results also arise from cognition operating on different knowledge domains. We argue that, the still contradictory and inconclusive discussion about the relationship between intelligence and creativity ( Silvia, 2008 ), should involve the issue of knowledge domain.

Intelligence tests contain items that pertain to, e.g., verbal, abstract, mechanical and spatial reasoning abilities, while their content mostly operates on knowledge domains that are related to contents contained in school curricula. Items of creativity tests, by contrast, pertain to more idiosyncratic knowledge domains, their contents relating to associations between stored personal experiences ( Karmiloff-Smith, 1992 ). The influence of knowledge domain on the relationships between different test scores was already mentioned by Guilford (1956 , p. 169). This author expected a higher correlation between scores from a typical intelligence test and a divergent thinking test than between scores from two divergent thinking tests because the former pair operated on identical information and the latter pair on different information.

Studies with the CRT showed that when knowledge domain is controlled for, the development of intelligence operating in ill-defined problem space does not compare to that of traditional intelligence but develops more similarly to the development of creativity ( Welter et al., in press ).

Relationship Intelligence and Creativity

The Threshold theory ( Guilford, 1967 ) predicts a relationship between intelligence and creativity up to approximately an intelligence quotient (IQ) level of 120 but not beyond ( Lubart, 2003 ; Runco, 2007 ). Threshold theory was corroborated when creative potential was found to be related to intelligence up to certain IQ levels; however, the theory was refuted, when focusing on achievement in creative domains; it showed that creative achievement benefited from higher intelligence even at fairly high levels of intellectual ability ( Jauk et al., 2013 ).

Distinguishing between subtypes of general intelligence known as fluent and crystallized intelligence ( Cattell, 1967 ), Sligh et al. (2005) observed an inverse threshold effect with fluid IQ: a correlation with creativity test scores in the high IQ group but not in the average IQ group. Also creative achievement showed to be affected by fluid intelligence ( Beaty et al., 2014 ). Intelligence, defined as fluid IQ, verbal fluency, and strategic abilities, showed a higher correlation with creativity scores ( Silvia, 2008 ) than when defined as crystallized intelligence. Creativity tests, which involved convergent thinking (e.g., Remote Association Test; Mednick, 1962 ) showed higher correlations with intelligence than ones that involved only divergent thinking (e.g., the Alternate Uses Test; Guilford et al., 1978 ).

That the Remote Association test also involves convergent thinking follows from the instructions; one is asked, when presented with a stimulus word (e.g., table) to produce the first word one thinks of (e.g., chair). The word pair table–chair is a common association, more remote is the pair table–plate, and quite remote is table–shark. According to Mednick’s theory (a) all cognitive work is done essentially by combining or associating ideas and (b) individuals with more commonplace associations have an advantage in well-defined problem spaces, because the class of relevant associations is already implicit in the statement of the problem ( Eysenck, 2003 ).

To circumvent the problem of tests differing in knowledge domain, one can develop out of one task a more divergent and a more convergent thinking task by asking, on the one hand, for the generation of original responses, and by asking, on the other hand, for more common responses ( Jauk et al., 2012 ). By changing the instruction of a task, from convergent to divergent, one changes the constraints the solution has to answer and, thereby, one changes for cognition its freedom of operation ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ). However, asking for more common responses is still a divergent thinking task because it instigates a generative and ideational process.

Indeed, studying the relationship between intelligence and creativity with knowledge domain controlled for yielded different results as defined in the Threshold theory. A study in which knowledge domain was controlled for showed, firstly, that intelligence is no predictor for the development of creativity ( Welter et al., 2016 ). Secondly, that the relationship between scores of intelligence and creativity tests as defined under the Threshold theory was only observed in a small subset of primary school children, namely, female children in Grade 4 ( Welter et al., 2016 ). We state that relating results of operations yielded by cognitive abilities performing in defined and in ill-defined problem spaces can only be informative when it is ensured that cognitive processes also operate on an identical knowledge domain.

Intertwining of Cognitive Abilities

Eysenck (2003) observed that there is little justification for considering the constructs of divergent and convergent thinking in categorical terms in which one construct excludes the other. In processes that yield original and appropriate solutions convergent and divergent thinking both operate on the same large knowledge base and the underlying cognitive processes are not entirely dissimilar ( Eysenck, 2003 , p. 110–111).

Divergent thinking is especially effective when it is coupled with convergent thinking ( Runco, 2003 ; Gabora and Ranjan, 2013 ). A design problem study ( Jaarsveld and van Leeuwen, 2005 ) showed that divergent production was active throughout the design, as new meanings are continuously added to the evolving structure ( Akin, 1986 ), and that convergent production was increasingly important toward the end of the process, as earlier productions are wrapped up and integrated in the final design. These findings are in line with the assumptions of Wertheimer (1945/1968) who stated that thinking within ill-defined problem space is characterized by two points of focus; one is to work on the parts, the other to make the central idea clearer.

Parallel to the discussion about the intertwining of convergent and divergent thinking abilities in processes that evolve in ill-defined problem space we find the discussion about how intelligence may facilitate creative thought. This showed when top-down cognitive control advanced divergent processing in the generation of original ideas and a certain measure of cognitive inhibition advanced the fluency of idea generation ( Nusbaum and Silvia, 2011 ). Fluid intelligence and broad retrieval considered as intelligence factors in a structural equation study contributed both to the production of creative ideas in a metaphor generation task ( Beaty and Silvia, 2013 ). The notion that creative thought involves top-down, executive processes showed in a latent variable analysis where inhibition primarily promoted the fluency of ideas, and intelligence promoted their originality ( Benedek et al., 2012 ).

Definitions of the Constructs Intelligence and Creativity

The various definitions of the constructs of intelligence and creativity show a problematic overlap. This overlap stems from the enormous endeavor to unanimously agree on valid descriptions for each construct. Spearman (1927) , after having attended many symposia that aimed at defining intelligence, stated that “in truth, ‘intelligence’ has become a mere vocal sound, a word with so many meanings that finally it has none” (p. 14).

Intelligence is expressed in terms of adaptive, goal-directed behavior; and the subset of such behavior that is labeled “intelligent” seems to be determined in large part by cultural or societal norms ( Sternberg and Salter, 1982 ). The development of the IQ measure is discussed by Carroll (1982) : “Binet (around 1905) realized that intelligent behavior or mental ability can be ranged along a scale. Not much later, Stern (around 1912) noticed that, as chronological age increased, variation in mental age changes proportionally. He developed the IQ ratio, whose standard deviation would be approximately constant over chronological age if mental age was divided by chronological age. With the development of multiple-factor-analyses (Thurstone, around 1935) it could be shown that intelligence is not a simple unitary trait because at least seven somewhat independent factors of mental ability were identified.”

Creativity is defined as a combined manifestation of novelty and usefulness ( Jung et al., 2010 ). Although it is identified with divergent thinking, and performance on divergent thinking tasks predicts, e.g., quantity of creative achievements ( Torrance, 1988 , as cited in Beaty et al., 2014 ) and quality of creative performance ( Beaty et al., 2013 ), it cannot be identified uniquely with divergent thinking.

Divergent thinking often leads to highly original ideas that are honed to appropriate ideas by evaluative processes of critical thinking, and valuative and appreciative considerations ( Runco, 2008 ). Divergent thinking tests should be more considered as estimates of creative problem solving potential rather than of actual creativity ( Runco, 1991 ). Divergent thinking is not specific enough to help us understand what, exactly, are the mental processes—or the cognitive abilities—that yield creative thoughts ( Dietrich, 2007 ).

Although current definitions of intelligence and creativity try to determine for each separate construct a unique set of cognitive abilities, analyses show that definitions vary in the degree to which each includes abilities that are generally considered to belong to the other construct ( Runco, 2003 ; Jaarsveld et al., 2012 ). Abilities considered belonging to the construct of intelligence such as hypothesis testing, inhibition of alternative responses, and creating mental images of new actions or plans are also considered to be involved in creative thinking ( Fuster, 1997 , as cited in Colom et al., 2009 , p. 215). The ability, for instance, to evaluate , which is considered to belong to the construct of intelligence and assesses the match between a proposed solution and task constraints, has long been considered to play a role in creative processes that goes beyond the mere generation of a series of ideas as in creativity tasks ( Wallas, 1926 , as cited in Gabora, 2002 , p. 1; Boden, 1990 ).

The Geneplore model ( Finke et al., 1992 ) explicitly models this idea; after stages in which objects are merely generated, follow phases in which an object’s utility is explored and estimated. The generation phase brings forth pre inventive objects, imaginary objects that are generated without any constraints in mind. In exploration, these objects are evaluated for their possible functionalities. In anticipating the functional characteristics of generated ideas, convergent thinking is needed to apprehend the situation, make evaluations ( Kozbelt, 2008 ), and consider the consequences of a chosen solution ( Goel and Pirolli, 1992 ). Convergent reasoning in creativity tasks invokes criteria of functionality and appropriateness ( Halpern, 2003 ; Kaufmann, 2003 ), goal directedness and adaptive behavior ( Sternberg, 1982 ), as well as the abilities of planning and attention. Convergent thinking stages may even require divergent thinking sub processes to identify restrictions on proposed new ideas and suggest requisite revision strategies ( Mumford et al., 2007 ). Hence, evaluation, which is considered to belong to the construct of intelligence, is also functional in creative processes.

In contrast, the ability of flexibility , which is considered to belong to the construct of creativity and denotes an openness of mind that ensures the generation of ideas from different domains, showed, as a factor component for latent divergent thinking, a relationship with intelligence ( Silvia, 2008 ). Flexibility was also found to play an important role in intelligent behavior where it enables us to do novel things smartly in new situations ( Colunga and Smith, 2008 ). These authors studied children’s generalizations of novel nouns and concluded that if we are to understand human intelligence, we must understand the processes that make inventiveness. They propose to include the construct of flexibility within that of intelligence. Therefore, definitions of the constructs we are to measure affect test construction and the resulting data. However, an overlap between definitions, as discussed, yields a test diversity that makes it impossible to interpret the different findings across studies with any confidence ( Arden et al., 2010 ). Also Kim (2005) concluded that because of differences in tests and administration methods, the observed correlation between intelligence and creativity was negligible. As the various definitions of the constructs of intelligence and creativity show problematic overlap, we propose to circumvent the discussion about which cognitive abilities are assessed by which construct, and to consider both constructs as being involved in one design process. This approach allows us to study the contribution to this process of the various defined abilities, without one construct excluding the other.

Reasoning Abilities

The CRT is a psychometrical tool constructed on the basis of an alternative construct of human cognitive functioning that considers creative reasoning as a thinking process understood as the cooperation between cognitive abilities related to intelligent and creative thinking.

In generating relationships for a matrix, reasoning and more specifically the ability of rule invention is applied. The ability of rule invention could be considered as an extension of the sequence of abilities of rule learning, rule inference, and rule application, implying that creativity is an extension of intelligence ( Shye and Goldzweig, 1999 ). According to this model, we could expect different results between a task assessing abilities of rule learning and rule inference, and a task assessing abilities of rule application. In two studies rule learning and rule inference was assessed with the RPM and rule application was assessed with the CRT. Results showed that from Grades 1 to 4, the frequencies of relationships applied did not correlate with those solved ( Jaarsveld et al., 2010 , 2012 ). Results showed that performance in the CRT allows an insight of cognitive abilities operating on relationships among components that differs from the insight based on performance within the same knowledge domain in a matrix solving task. Hence, reasoning abilities lead to different performances when applied in solving closed as to open problems.

We assume that reasoning abilities are more clearly reflected when one formulates a matrix from scratch; in the process of thinking and drawing one has, so to speak, to solve one’s own matrix. In doing so one explains to oneself the relationship(s) realized so far and what one would like to attain. Drawing is thinking aloud a problem and aids the designer’s thinking processes in providing some “talk-back” ( Cross and Clayburn Cross, 1996 ). Explanatory activity enhances learning through increased depth of processing ( Siegler, 2005 ). Analyzing explanations of examples given with physics problems showed that they clarify and specify the conditions and consequences of actions, and that they explicate tacit knowledge; thereby enhancing and completing an individual’s understanding of principles relevant to the task ( Chi and VanLehn, 1991 ). Constraint of the CRT is that the matrix, in principle, can be solved by another person. Therefore, in a kind of inner explanatory discussion, the designer makes observations of progress, and uses evaluations and decisions to answer this constraint. Because of this, open problems where certain constraints have to be met, constitute a powerful mechanism for promoting understanding and conceptual advancement ( Chi and VanLehn, 1991 ; Mestre, 2002 ; Siegler, 2005 ).

Convergent and divergent thinking processes have been studied with a variety of intelligence and creativity tests, respectively. Relationships between performances on these tests have been demonstrated and a large number of research questions have been addressed. However, the fact that intelligence and creativity tests vary in the definition of their construct, in their problem space, and in their knowledge domain, poses methodological problems regarding the validity of comparisons of test results. When we want to focus on one cognitive process, e.g., intelligent thinking, and on its different performances in well or ill-defined problem situations, we need pairs of tasks that are constructed along identical definitions of the construct to be assessed, that differ, however, in the description of their constraints but are identical regarding their knowledge domain.

One such possible pair, the Progressive Matrices Test and the CRT was suggested here. The CRT was developed on the basis of creative reasoning , a construct that assumes the intertwining of intelligent and creativity related abilities when looking for original and applicable solutions. Matched with the Matrices test, results indicated that, besides similarities, intelligent thinking also yielded considerable differences for both problem spaces. Hence, with knowledge domain controlled, and only differences in problem space remaining, comparison of data yielded new results on intelligence’s operations. Data gathered from intelligence and creativity tests, whether they are performance scores or physiological measurements on the basis of, e.g., EEG, and fMRI methods, are reflections of cognitive processes performing on a certain test that was constructed on the basis of a certain definition of the construct it was meant to measure. Data are also reflections of the processes evolving within a certain problem space and of cognitive abilities operating on a certain knowledge domain.

Data can unhide brain networks that are involved in the performance of certain tasks, e.g., traditional intelligence and creativity tests, but data will always be related to the characteristics of the task. The characteristics of the task, such as problem space and knowledge domain originated at the construction of the task, and the construction, on its turn, is affected by the definition of the construct the task is meant to measure.

Here we present the CRT as one possible solution for the described problems in cognition research. However, for research on relationships among test scores other pairs of tests are imaginable, e.g., pairs of tasks operating on the same domain where one task has a defined problem space and the other one an ill-defined space. It is conceivable that pairs of test could operate, besides on the domain of mathematics, on content of e.g., visuo-spatial, verbal, and musical domains. Pairs of test have been constructed by changing the instruction of a task; instructions instigated a more convergent or a more a divergent mode of response ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ; Beaty et al., 2013 ).

The CRT involves the creation of components and their relationships for a 3 × 3 matrix. Hence, matrices created in the CRT are original in the sense that they all bear individual markers and they are applicable in the sense, that they can, in principle, be solved by another person. We showed that the CRT instigates a real design process; creators’ cognitive abilities are wrapped up in a process that should produce a closed problem within an ill-defined problem space.

For research on the relationship among convergent and divergent thinking, we need pairs of test that differ in the problem spaces related to each test but are identical in the knowledge domain on which cognition operates. The test pair of RPM and CRT provides such a pair. For research on the intertwining of convergent and divergent thinking, we need tasks that measure more than tests assessing each construct alone. We need tasks that are developed on the definition of intertwining cognitive abilities; the CRT is one such test.

Hence, we hope to have sufficiently discussed and demonstrated the importance of the three test features, construct definition, problem space, and knowledge domain, for research questions in creative cognition research.

Author Contributions

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00134/full#supplementary-material

  • Abraham A., Bubic A. (2015). Semantic memory as the root of imagination. Front. Psychol. 6 : 325 10.3389/fpsyg.2015.00325 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Abraham A., Windmann S. (2007). Creative cognition: the diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods 42 38–48. 10.1016/j.ymeth.2006.12.007 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Akin O. (1986). Psychology of Architectural Design London: Pion. [ Google Scholar ]
  • Anderson J. R. (1983). The Architecture of Cognition Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Arden R., Chavez R. S., Grazioplene R., Jung R. E. (2010). Neuroimaging creativity: a psychometric view. Behav. Brain Res. 214 143–156. 10.1016/j.bbr.2010.05.015 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arnheim R. (1962/1974). Picasso’s Guernica Berkeley: University of California Press. [ Google Scholar ]
  • Barsalou L. W. (1992). Cognitive Psychology: An Overview for Cognitive Scientists Hillsdale, NJ: LEA. [ Google Scholar ]
  • Beaty R. E., Benedek M., Silvia P. J., Schacter D. L. (2016). Creative cognition and brain network dynamics. Trends Cogn. Sci. 20 87–95. 10.1016/j.tics.2015.10.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Kaufman S. B., Benedek M., Jung R. E., Kenett Y. N., Jauk E., et al. (2015). Personality and complex brain networks: the role of openness to experience in default network efficiency. Hum. Brain Mapp. 37 773–777. 10.1002/hbm.23065 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Nusbaum E. C., Silvia P. J. (2014). Does insight problem solving predict real-world creativity? Psychol. Aesthet. Creat. Arts 8 287–292. 10.1037/a0035727 [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Silvia R. E. (2013). Metaphorically speaking: cognitive abilities and the production of figurative language. Mem. Cognit. 41 255–267. 10.3758/s13421-012-0258-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Smeekens B. A., Silvia P. J., Hodges D. A., Kane M. J. (2013). A first look at the role of domain-general cognitive and creative abilities in jazz improvisation. Psychomusicology 23 262–268. 10.1037/a0034968 [ CrossRef ] [ Google Scholar ]
  • Benedek M., Bergner S., Konen T., Fink A., Neubauer A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49 3505–3511. 10.1016/j.neuropsychologia.2011.09.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Franz F., Heene M., Neubauer A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Pers. Individ. Dif. 53 480–485. 10.1016/j.paid.2012.04.014 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Jauk E., Sommer M., Arendasy M., Neubauer A. C. (2014). Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity. Intelligence 46 73–83. 10.1016/j.intell.2014.05.007 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Boden M. A. (1990). The Creative Mind: Myths and Mechanisms London: Abacus. [ Google Scholar ]
  • Boden M. A. (1996). Artificial Intelligence New York, NY: Academic. [ Google Scholar ]
  • Buschman T. J., Miller E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315 1860–1862. 10.1126/science.1138071 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Carroll J. B. (1982). “The measurement of Intelligence,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 29–120. [ Google Scholar ]
  • Cattell R. B. (1967). The theory of fluid and crystallized general intelligence checked at the 5-6 year-old level. Br. J. Educ. Psychol. 37 209–224. 10.1111/j.2044-8279.1967.tb01930.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chi M. T. H. (1997). “ Creativity: Shifting across ontological categories flexibly ,” in Creative Thought: An Investigation of Conceptual Structures and Processes , eds Ward T., Smith S., Vaid J. (Washington, DC: American Psychological Association; ), 209–234. [ Google Scholar ]
  • Chi M. T. H., VanLehn K. A. (1991). The content of physics self-explanations. J. Learn. Sci. 1 69–105. 10.1207/s15327809jls0101_4 [ CrossRef ] [ Google Scholar ]
  • Christensen B. T. (2007). The relationship of analogical distance to analogical function and preinventive structure: the case of engineering design. Mem. Cogn. 35 29–38. 10.3758/BF03195939 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Colom R., Haier R. J., Head K., Álvarez-Linera J., Quiroga M. A., Shih P. C., et al. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37 124–135. 10.1016/j.intell.2008.07.007 [ CrossRef ] [ Google Scholar ]
  • Colunga E., Smith L. B. (2008). Flexibility and variability: essential to human cognition and the study of human cognition. New Ideas Psychol. 26 158–192. 10.1016/j.newideapsych.2007.07.012 [ CrossRef ] [ Google Scholar ]
  • Cooper N. R., Croft R. J., Dominey S. J. J., Burgess A. P., Gruzelier J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 47 65–74. 10.1016/S0167-8760(02)00107-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cropley A. (2006). In praise of convergent thinking. Creat. Res. J. 18 391–404. 10.1207/s15326934crj1803_13 [ CrossRef ] [ Google Scholar ]
  • Cropley A., Cropley D. (2008). Resolving the paradoxes of creativity: an extended phase model. Camb. J. Educ. 38 355–373. 10.1080/03057640802286871 [ CrossRef ] [ Google Scholar ]
  • Cross N., Clayburn Cross A. (1996). Winning by design: the methods of Gordon Murray, racing car designer. Des. Stud. 17 91–107. 10.1016/0142-694X(95)00027-O [ CrossRef ] [ Google Scholar ]
  • Dennett D. (1978). Brainstorms: Philosophical Essays on Mind and Psychology Montgomery, VT: Bradford Books. [ Google Scholar ]
  • Dietrich A. (2007). Who’s afraid of a cognitive neuroscience of creativity? Methods 42 22–27. 10.1016/j.ymeth.2006.12.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dorst K. (2004). The problem of design problems: Problem solving and design expertise. J. Design Res. 4 10.1504/JDR.2004.009841 [ CrossRef ] [ Google Scholar ]
  • Dorst K. (2011). The core of ‘design thinking’ and its application. Des. Stud. 32 521–532. 10.1016/j.destud.2011.07.006 [ CrossRef ] [ Google Scholar ]
  • Eysenck H. J. (2003). “Creativity, personality and the convergent-divergent continuum,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 95–114. [ Google Scholar ]
  • Fink A., Benedek M. (2014). EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44 111–123. 10.1016/j.neubiorev.2012.12.002 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fink A., Benedek M., Grabner R. H., Staudt B., Neubauer A. C. (2007). Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. Methods 42 68–76. 10.1016/j.ymeth.2006.12.001 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fink A., Grabner R. H., Benedek M., Reishofer G., Hauswirth V., Fally M., et al. (2009). The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum. Brain Mapp. 30 734–748. 10.1002/hbm.20538 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Finke R. A., Ward T. B., Smith S. M. (1992). Creative Cognition: Theory, Research, and Applications Cambridge, MA: MIT Press. [ Google Scholar ]
  • Fuster J. M. (1997). Network memory. Trends Neurosci. 20 451–459. 10.1016/S0166-2236(97)01128-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gabora L. (2002). “Cognitive mechanisms underlying the creative process,” in Proceedings of the Fourth International Conference on Creativity and Cognition , eds Hewett T., Kavanagh T. (Loughborough: Loughborough University; ), 126–133. [ Google Scholar ]
  • Gabora L. (2010). Revenge of the ‘neurds’: Characterizing creative thought in terms of the structure and dynamics of human memory. Creat. Res. J. 22 1–13. 10.1080/10400410903579494 [ CrossRef ] [ Google Scholar ]
  • Gabora L., Kaufman S. B. (2010). “Evolutionary approaches to creativity,” in The Cambridge Handbook of Creativity , eds Kaufman J. S., Sternberg R. J. (Cambridge: Cambridge University Press; ), 279–300. [ Google Scholar ]
  • Gabora L., Ranjan A. (2013). “How insight emerges in a distributed, content-addressable memory,” in The Neuroscience of Creativity , eds Bristol A., Vartanian O., Kaufman J. (Cambridge: MIT Press; ), 19–43. [ Google Scholar ]
  • Gabora L., Saab A. (2011). “Creative inference and states of potentiality in analogy problem solving,” in Proceedings of the Annual Meeting of the Cognitive Science Society , Boston, MA, 3506–3511. [ Google Scholar ]
  • Gentner D. (1983). Structure mapping: a theoretical framework for analogy. Cogn. Sci. 7 155–170. 10.1207/s15516709cog0702_3 [ CrossRef ] [ Google Scholar ]
  • Getzels J. W. (1975). Problem finding and the inventiveness of solutions. J. Creat. Behav. 9 12–18. 10.1002/j.2162-6057.1975.tb00552.x [ CrossRef ] [ Google Scholar ]
  • Getzels J. W. (1987). “Creativity, intelligence, and problem finding: retrospect and prospect,” in Frontiers of Creativity Research: Beyond the Basics , ed. Isaksen S. G. (Buffalo, NY: Bearly Limited; ), 88–102. [ Google Scholar ]
  • Getzels J. W., Csikszentmihalyi M. (1976). The Creative Vision: A Longitudinal Study of Problem Finding in Art New York, NY: Wiley. [ Google Scholar ]
  • Ghiselin B. (ed.) (1952/1985). The Creative Process Los Angeles: University of California. [ Google Scholar ]
  • Goel V., Pirolli P. (1992). The structure of design problem spaces. Cogn. Sci. 16 395–429. 10.1207/s15516709cog1603_3 [ CrossRef ] [ Google Scholar ]
  • Goldschmidt G. (2013). “A micro view of design reasoning: two-way shifts between embodiment and rationale,” in Creativity and Rationale: Enhancing Human Experience by Design, Human-Computer Interaction Series , ed. Carroll J. M. (London: Springer Verlag; ). 10.1007/978-1-4471-2_3 [ CrossRef ] [ Google Scholar ]
  • Goldschmidt G. (2014). Linkography: Unfolding the Design Process Cambridge, MA: MIT Press. [ Google Scholar ]
  • Grube H. E., Davis S. N. (1988). “Inching our way up mount Olympus: The evolving-systems approach to creative thinking,” in The Nature of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 243–270. [ Google Scholar ]
  • Guilford J. P. (1950). Creativity. Am. Psychol. 5 444–454. 10.1037/h0063487 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1956). The structure of intellect model. Psychol. Bull. 53 267–293. 10.1037/h0040755 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1959). “Traits of creativity,” in Creativity and its Cultivation , ed. Anderson H. H. (New York: Harper; ), 142–161. [ Google Scholar ]
  • Guilford J. P. (1967). The Nature of Human Intelligence New York, NY: McGraw-Hill, Inc. [ Google Scholar ]
  • Guilford J. P., Christensen P. R., Merrifield P. R., Wilson R. C. (1978). Alternate Uses: Manual of Instructions and Interpretation Orange, CA: Sheridan Psychological Services. [ Google Scholar ]
  • Halpern D. F. (2003). “Thinking critically about creative thinking,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 189–208. [ Google Scholar ]
  • Hayes J. R., Flowers L. S. (1986). Writing research and the writer. Am. Psychol. 41 1106–1113. 10.1037/0003-066X.41.10.1106 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S. (2007). Creative Cognition: New Perspectives on Creative Thinking Kaiserslautern: University of Kaiserslautern Press. [ Google Scholar ]
  • Jaarsveld S., Fink A., Rinner M., Schwab D., Benedek M., Lachmann T. (2015). Intelligence in creative processes; an EEG study. Intelligence 49 171–178. 10.1016/j.ijpsycho.2012.02.012 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., Hamel R., van Leeuwen C. (2010). Solving and creating Raven Progressive Matrices: reasoning in well and ill defined problem spaces. Creat. Res. J. 22 304–319. 10.1080/10400419.2010.503541 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., van Leeuwen C. (2012). Creative reasoning across developmental levels: convergence and divergence in problem creation. Intelligence 40 172–188. 10.1016/j.intell.2012.01.002 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., van Leeuwen C. (2013). “The impact of problem space on reasoning: Solving versus creating matrices,” in Proceedings of the 35th Annual Conference of the Cognitive Science Society , eds Knauff M., Pauen M., Sebanz N., Wachsmuth I. (Austin, TX: Cognitive Science Society; ), 2632–2638. [ Google Scholar ]
  • Jaarsveld S., van Leeuwen C. (2005). Sketches from a design process: creative cognition inferred from intermediate products. Cogn. Sci. 29 79–101. 10.1207/s15516709cog2901_4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jauk E., Benedek M., Dunst B., Neubauer A. C. (2013). The relationship between intelligence and creativity: new support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence 41 212–221. 10.1016/j.intell.2013.03.003 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jauk E., Benedek M., Neubauer A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84 219–225. 10.1016/j.ijpsycho.2012.02.012 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jaušovec N. (1999). “Brain biology and brain functioning,” in Encyclopedia of Creativity , eds Runco M. A., Pritzker S. R. (San Diego, CA: Academic Press; ), 203–212. [ Google Scholar ]
  • Jaušovec N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG Study. Intelligence 28 213–237. 10.1016/S0160-2896(00)00037-4 [ CrossRef ] [ Google Scholar ]
  • Jung R. E. (2014). Evolution, creativity, intelligence, and madness: “here be dragons”. Front. Psychol 5 : 784 10.3389/fpsyg.2014.00784 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jung R. E., Haier R. J. (2013). “Creativity and intelligence,” in Neuroscience of Creativity , eds Vartanian O., Bristol A. S., Kaufman J. C. (Cambridge, MA: MIT Press; ), 233–254. [ Google Scholar ]
  • Jung R. E., Segall J. M., Bockholt H. J., Flores R. A., Smith S. M., Chavez R. S., et al. (2010). Neuroanatomy of creativity. Hum. Brain Mapp. 31 398–409. 10.1002/hbm.20874 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Karmiloff-Smith A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science Cambridge, MA: MIT Press. [ Google Scholar ]
  • Kaufman J. C. (2015). Why creativity isn’t in IQ tests, why it matters, and why it won’t change anytime soon probably. Intelligence 3 59–72. 10.3390/jintelligence303005 [ CrossRef ] [ Google Scholar ]
  • Kaufmann G. (2003). What to measure? A new look at the concept of creativity. Scand. J. Educ. Res. 47 235–251. 10.1080/00313830308604 [ CrossRef ] [ Google Scholar ]
  • Kim K. H. (2005). Can only intelligent people be creative? J. Second. Gift. Educ. 16 57–66. [ Google Scholar ]
  • Koestler A. (1964). The Act of Creation London: Penguin. [ Google Scholar ]
  • Kozbelt A. (2008). Hierarchical linear modeling of creative artists’ problem solving behaviors. J. Creat. Behav. 42 181–200. 10.1002/j.2162-6057.2008.tb01294.x [ CrossRef ] [ Google Scholar ]
  • Kulkarni D., Simon H. A. (1988). The processes of scientific discovery: the strategy of experimentation. Cogn. Sci. 12 139–175. 10.1016/j.coph.2009.08.004 [ CrossRef ] [ Google Scholar ]
  • Limb C. J. (2010). Your Brain on Improve Available at: http://www.ted.com/talks/charles_limb_your_brain_on_improv [ Google Scholar ]
  • Lubart T. I. (2001). Models of the creative process: past, present and future. Creat. Res. J. 13 295–308. 10.1207/S15326934CRJ1334_07 [ CrossRef ] [ Google Scholar ]
  • Lubart T. I. (2003). Psychologie de la Créativité. Cursus. Psychologie Paris: Armand Colin. [ Google Scholar ]
  • Martindale C. (1999). “Biological basis of creativity,” in Handbook of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 137–152. [ Google Scholar ]
  • Mednick S. A. (1962). The associative basis of the creative process. Psychol. Rev. 69 220–232. 10.1037/h0048850 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mendelssohn G. A. (1976). Associational and attentional processes in creative performance. J. Pers. 44 341–369. 10.1111/j.1467-6494.1976.tb00127.x [ CrossRef ] [ Google Scholar ]
  • Mestre J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Appl. Dev. Psychol. 23 9–50. 10.1016/S0193-3973(01)00101-0 [ CrossRef ] [ Google Scholar ]
  • Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202. 10.1146/annurev.neuro.24.1.167 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mumford M. D., Hunter S. T., Eubanks D. L., Bedell K. E., Murphy S. T. (2007). Developing leaders for creative efforts: a domain-based approach to leadership development. Hum. Res. Manag. Rev. 17 402–417. 10.1016/j.hrmr.2007.08.002 [ CrossRef ] [ Google Scholar ]
  • Newell A., Simon H. A. (1972). “The theory of human problem solving,” in Human Problem Solving , eds Newell A., Simon H. (Englewood Cliffs, NJ: Prentice Hall; ), 787–868. [ Google Scholar ]
  • Nusbaum E. C., Silvia P. J. (2011). Are intelligence and creativity really so different? Intelligence 39 36–40. 10.1016/j.intell.2010.11.002 [ CrossRef ] [ Google Scholar ]
  • Palmiero M., Nori R., Aloisi V., Ferrara M., Piccardi L. (2015). Domain-specificity of creativity: a study on the relationship between visual creativity and visual mental imagery. Front. Psychol. 6 : 1870 10.3389/fpsyg.2015.01870 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Piaget J., Montangero J., Billeter J. (1977). “La formation des correlats,” in Recherches sur L’abstraction Reflechissante I , ed. Piaget J. (Paris: Presse Universitaires de France; ), 115–129. [ Google Scholar ]
  • Plucker J. (1999). Is the proof in the pudding? Reanalyses of torrance’s (1958 to present) longitudinal study data. Creat. Res. J. 12 103–114. 10.1207/s15326934crj1202_3 [ CrossRef ] [ Google Scholar ]
  • Raven J. C. (1938/1998). Standard Progressive Matrices, Sets A, B, C, D & E Oxford: Oxford Psychologists Press. [ Google Scholar ]
  • Razumnikova O. M., Volf N. V., Tarasova I. V. (2009). Strategy and results: sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35 285–294. 10.1134/S0362119709030049 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Runco M. A. (1991). The evaluative, valuative, and divergent thinking of children. J. Creat. Behav. 25 311–319. 10.1177/1073858414568317 [ CrossRef ] [ Google Scholar ]
  • Runco M. A. (2003). “Idea evaluation, divergent thinking, and creativity,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 69–94. [ Google Scholar ]
  • Runco M. A. (2007). Creativity, Theories and Themes: Research, Development, and Practice New York, NY: Elsevier. [ Google Scholar ]
  • Runco M. A. (2008). Commentary: divergent thinking is not synonymous with creativity. Psychol. Aesthet. Creat. Arts 2 93–96. 10.1037/1931-3896.2.2.93 [ CrossRef ] [ Google Scholar ]
  • Sakar P., Chakrabarti A. (2013). Support for protocol analyses in design research. Des. Issues 29 70–81. 10.1162/DESI_a_00231 [ CrossRef ] [ Google Scholar ]
  • Saraç S., Önder A., Karakelle S. (2014). The relations among general intelligence, metacognition and text learning performance. Educ. Sci. 39 40–53. [ Google Scholar ]
  • Shye S., Goldzweig G. (1999). Creativity as an extension of intelligence: Faceted definition and structural hypotheses. Megamot 40 31–53. [ Google Scholar ]
  • Shye S., Yuhas I. (2004). Creativity in problem solving. Tech. Rep. 10.13140/2.1.1940.0643 [ CrossRef ] [ Google Scholar ]
  • Siegler R. S. (1998). Children’s Thinking , 3rd Edn Upper Saddle River, NJ: Prentice Hall, 28–50. [ Google Scholar ]
  • Siegler R. S. (2005). Children’s learning. Am. Psychol. 60 769–778. 10.1037/0003-066X.60.8.769 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Silvia P. J. (2008). Creativity and intelligence revisited: a reanalysis of Wallach and Kogan (1965). Creat. Res. J. 20 34–39. 10.1080/10400410701841807 [ CrossRef ] [ Google Scholar ]
  • Silvia P. J., Beaty R. E., Nussbaum E. C. (2013). Verbal fluency and creativity: general and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence 41 328–340. 10.1016/j.intell.2013.05.004 [ CrossRef ] [ Google Scholar ]
  • Simon H. A. (1973). The structure of ill structured problems. Artif. Intell. 4 1012–1021. 10.1016/0004-3702(73)90011-8 [ CrossRef ] [ Google Scholar ]
  • Simon H. A., Newell A. (1971). Human problem solving: state of theory in 1970. Am. Psychol. 26 145–159. 10.1037/h0030806 [ CrossRef ] [ Google Scholar ]
  • Sligh A. C., Conners F. A., Roskos-Ewoldsen B. (2005). Relation of creativity to fluid and crystallized intelligence. J. Creat. Behav. 39 123–136. 10.1002/j.2162-6057.2005.tb01254.x [ CrossRef ] [ Google Scholar ]
  • Spearman C. (1904). ‘General intelligence,’ objectively determined and measured. Am. J. Psychol. 15 201–293. 10.2307/1412107 [ CrossRef ] [ Google Scholar ]
  • Spearman C. (1927). The Abilities of Man London: Macmillan. [ Google Scholar ]
  • Sternberg R. J. (1982). “Conceptions of intelligence,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–28. [ Google Scholar ]
  • Sternberg R. J. (2005). “The WICS model of giftedness,” in Conceptions of Giftedness , 2nd Edn, eds Sternberg R. J., Davidson J. E. (New York, NY: Cambridge University Press; ), 237–243. [ Google Scholar ]
  • Sternberg R. J., Lubart T. I. (1999). “The concept of creativity: Prospects and paradigms,” in Handbook of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–15. [ Google Scholar ]
  • Sternberg R. J., Salter W. (1982). “The nature of intelligence and its measurements,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–24. [ Google Scholar ]
  • Thagard P., Verbeurgt K. (1998). Coherence as constraint satisfaction. Cogn. Sci. 22 l–24. 10.1207/s15516709cog2201_1 [ CrossRef ] [ Google Scholar ]
  • Torrance E. P. (1988). “The nature of creativity as manifest in its testing,” in The Nature of Creativity: Contemporary Psychological Perspectives , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 43–75. [ Google Scholar ]
  • Urban K. K., Jellen H. G. (1995). Test of Creative Thinking – Drawing Production Frankfurt: Swets Test Services. [ Google Scholar ]
  • van Leeuwen C., Verstijnen I. M., Hekkert P. (1999). “Common unconscious dynamics underlie uncommon conscious effect: a case study in the iterative nature of perception and creation,” in Modeling Consciousness Across the Disciplines , ed. Jordan J. S. (Lanham, MD: University Press of America; ), 179–218. [ Google Scholar ]
  • Vernon P. E. (ed.) (1970). Creativity London: Penguin. [ Google Scholar ]
  • Verstijnen I. M., Heylighen A., Wagemans J., Neuckermans H. (2001). “Sketching, analogies, and creativity,” in Visual and Spatial Reasoning in Design, II. Key Centre of Design Computing and Cognition , eds Gero J. S., Tversky B., Purcell T. (Sydney, NSW: University of Sydney; ). [ Google Scholar ]
  • Wallas G. (1926). The Art of Thought New York, NY: Harcourt, Brace & World. [ Google Scholar ]
  • Ward T. B. (2007). Creative cognition as a window on creativity. Methods 42 28–37. 10.1016/j.ymeth.2006.12.002 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Webb Young J. (1939/2003). A Technique for Producing Ideas New York, NY: McGraw-Hill. [ Google Scholar ]
  • Welter M. M., Jaarsveld S., Lachmann T. Problem space matters: development of creativity and intelligence in primary school children. Creat. Res. J. (in press) [ Google Scholar ]
  • Welter M. M., Jaarsveld S., van Leeuwen C., Lachmann T. (2016). Intelligence and creativity; over the threshold together? Creat. Res. J. 28 212–218. 10.1080/10400419.2016.1162564 [ CrossRef ] [ Google Scholar ]
  • Wertheimer M. (1945/1968). Productive Thinking (Enlarged Edition) London: Tavistock. [ Google Scholar ]
  • Yamamoto Y., Nakakoji K., Takada S. (2000). Hand on representations in two dimensional spaces for early stages of design. Knowl. Based Syst. 13 357–384. 10.1016/S0950-7051(00)00078-2 [ CrossRef ] [ Google Scholar ]
  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Cognitive Psychology

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 13
November 2022 25
December 2022 17
January 2023 10
February 2023 20
March 2023 43
April 2023 24
May 2023 89
June 2023 78
July 2023 7
August 2023 10
September 2023 9
October 2023 13
November 2023 34
December 2023 18
January 2024 6
February 2024 28
March 2024 27
April 2024 95
May 2024 72
June 2024 98
July 2024 9
August 2024 1
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

More about the TestGorilla Problem Solving test

Discover the science behind this test and check out the recommended tests you may find useful alongside it in an assessment.

Scroll down for the latest validity study and suggested additional tests.

Back to the Problem Solving test page

Available languages: 
English, Dutch, French, German, Spanish, Portuguese (Brazil), Japanese, Italian, Swedish, Danish, Norwegian, and Polish

problem solving ability test in psychology

Test type:


Cognitive ability

Administration time: 


Difficulty level:


Intermediate

Number of questions:


12 questions per test, 97 in the test bank

 happy young woman with pink hair

Scoring benchmarks

Benchmarks are available for various education levels (ranging from some high school education to Master’s degree or higher), business functions (from administrative to software development), and seniority levels (junior to senior).

Psychometric properties of the Problem Solving test

The metrics reported below are based on a sample size (N) of at least 1,000 candidates unless indicated otherwise.

Reliability: Cronbach’s alpha coefficient = .72

Face validity: Candidates rated this test as accurately measuring their skills (average score of 3.88 out of 5.00).

Criterion-related validity: Candidates with higher scores on this test received higher average ratings from the hiring team during the selection process (r = .30).

For an in-depth look at interpreting test results, please take a look at our Science series articles: How to interpret test fact sheets (part 1): Reliability , and How to interpret test fact sheets (part 2): Validity.

For an explanation of the various terms, please refer to our Science glossary .

Reliability

Acceptable

Content validity

Acceptable

Face validity

Acceptable

Construct validity

Acceptable

Criterion-related validity

Acceptable

Age differences

Pending

Pending

Pending

Gender differences

Acceptable

Ethnicity differences

Pending

Pending

Pending

Use these tests with the Problem Solving test

We believe that multi-measure testing is essential in a holistic hiring process because it examines the candidate as a whole, including technical skills, soft skills, and personality. Below are some tests we recommend using alongside the Problem Solving test.

Attention to Detail (Textual)

Understanding instructions, big 5 (ocean).

happy woman wearing glasses with curly hair

Use TestGorilla to discover top candidates

Unlock the power of successful hiring! Streamline your hiring process, make informed decisions, and build a team that drives success. Begin your journey to a stronger team – use our Problem Solving test in your assessment and find your future top performers.

  • Join Mind Tools

The Mind Tools Content Team

How Good Is Your Problem Solving?

How Good Is Your Problem Solving?

© iStockphoto Entienou

Use a systematic approach.

Good problem solving skills are fundamentally important if you're going to be successful in your career.

But problems are something that we don't particularly like.

They're time-consuming.

They muscle their way into already packed schedules.

They force us to think about an uncertain future.

And they never seem to go away!

That's why, when faced with problems, most of us try to eliminate them as quickly as possible. But have you ever chosen the easiest or most obvious solution – and then realized that you have entirely missed a much better solution? Or have you found yourself fixing just the symptoms of a problem, only for the situation to get much worse?

To be an effective problem-solver, you need to be systematic and logical in your approach. This quiz helps you assess your current approach to problem solving. By improving this, you'll make better overall decisions. And as you increase your confidence with solving problems, you'll be less likely to rush to the first solution – which may not necessarily be the best one.

Once you've completed the quiz, we'll direct you to tools and resources that can help you make the most of your problem-solving skills.

How Good Are You at Solving Problems?

Instructions.

For each statement, click the button in the column that best describes you. Please answer questions as you actually are (rather than how you think you should be), and don't worry if some questions seem to score in the 'wrong direction'. When you are finished, please click the 'Calculate My Total' button at the bottom of the test.

Your last quiz results are shown.

You last completed this quiz on , at .

Not at All Rarely Sometimes Often Very Often

Score Interpretation

Score Comment
16-36

You probably tend to view problems as negatives, instead of seeing them as opportunities to make exciting and necessary change. Your approach to problem solving is more intuitive than systematic, and this may have led to some poor experiences in the past. With more practice, and by following a more structured approach, you'll be able to develop this important skill and start solving problems more effectively right away. (Read to start.)

37-58

Your approach to problem solving is a little "hit-and-miss." Sometimes your solutions work really well, and other times they don't. You understand what you should do, and you recognize that having a structured problem-solving process is important. However, you don't always follow that process. By working on your consistency and committing to the process, you'll see significant improvements. (Read to start.)

59-80

You are a confident problem solver. You take time to understand the problem, understand the criteria for a good decision, and generate some good options. Because you approach problems systematically, you cover the essentials each time – and your decisions are well though out, well planned, and well executed. You can continue to perfect your problem-solving skills and use them for continuous improvement initiatives within your organization. Skim through the sections where you lost points below, and sharpen your skills still further! (Read to start.)

Answering these questions should have helped you recognize the key steps associated with effective problem solving.

This quiz is based on Dr Min Basadur's Simplexity Thinking    problem-solving model. This eight-step process follows the circular pattern shown below, within which current problems are solved and new problems are identified on an ongoing basis. This assessment has not been validated and is intended for illustrative purposes only. 

Figure 1 – The Simplexity Thinking Process

Reproduced with permission from Dr Min Basadur from "The Power of Innovation: How to Make Innovation a Part of Life & How to Put Creative Solutions to Work" Copyright ©1995

Simplex Process Diagram

Below, we outline the tools and strategies you can use for each stage of the problem-solving process. Enjoy exploring these stages!

Step 1: Find the Problem

(Questions 7, 12)

Some problems are very obvious, however others are not so easily identified. As part of an effective problem-solving process, you need to look actively for problems – even when things seem to be running fine. Proactive problem solving helps you avoid emergencies and allows you to be calm and in control when issues arise.

These techniques can help you do this:

  • PEST Analysis   helps you pick up changes to your environment that you should be paying attention to. Make sure too that you're watching changes in customer needs and market dynamics, and that you're monitoring trends that are relevant to your industry.
  • Risk Analysis   helps you identify significant business risks.
  • Failure Modes and Effects Analysis   helps you identify possible points of failure in your business process, so that you can fix these before problems arise.
  • After Action Reviews   help you scan recent performance to identify things that can be done better in the future.
  • Where you have several problems to solve, our articles on Prioritization   and Pareto Analysis   help you think about which ones you should focus on first.

Step 2: Find the Facts

(Questions 10, 14)

After identifying a potential problem, you need information. What factors contribute to the problem? Who is involved with it? What solutions have been tried before? What do others think about the problem?

If you move forward to find a solution too quickly, you risk relying on imperfect information that's based on assumptions and limited perspectives, so make sure that you research the problem thoroughly.

Step 3: Define the Problem

(Questions 3, 9)

Now that you understand the problem, define it clearly and completely. Writing a clear problem definition forces you to establish specific boundaries for the problem. This keeps the scope from growing too large, and it helps you stay focused on the main issues.

A great tool to use at this stage is CATWOE   . With this process, you analyze potential problems by looking at them from six perspectives, those of its Customers; Actors (people within the organization); the Transformation, or business process; the World-view, or top-down view of what's going on; the Owner; and the wider organizational Environment. By looking at a situation from these perspectives, you can open your mind and come to a much sharper and more comprehensive definition of the problem.

Cause and Effect Analysis   is another good tool to use here, as it helps you think about the many different factors that can contribute to a problem. This helps you separate the symptoms of a problem from its fundamental causes.

Step 4: Find Ideas

(Questions 4, 13)

With a clear problem definition, start generating ideas for a solution. The key here is to be flexible in the way you approach a problem. You want to be able to see it from as many perspectives as possible. Looking for patterns or common elements in different parts of the problem can sometimes help. You can also use metaphors   and analogies to help analyze the problem, discover similarities to other issues, and think of solutions based on those similarities.

Traditional brainstorming   and reverse brainstorming   are very useful here. By taking the time to generate a range of creative solutions to the problem, you'll significantly increase the likelihood that you'll find the best possible solution, not just a semi-adequate one. Where appropriate, involve people with different viewpoints to expand the volume of ideas generated.

Don't evaluate your ideas until step 5. If you do, this will limit your creativity at too early a stage.

Step 5: Select and Evaluate

(Questions 6, 15)

After finding ideas, you'll have many options that must be evaluated. It's tempting at this stage to charge in and start discarding ideas immediately. However, if you do this without first determining the criteria for a good solution, you risk rejecting an alternative that has real potential.

Decide what elements are needed for a realistic and practical solution, and think about the criteria you'll use to choose between potential solutions.

Paired Comparison Analysis   , Decision Matrix Analysis   and Risk Analysis   are useful techniques here, as are many of the specialist resources available within our Decision-Making section . Enjoy exploring these!

Step 6: Plan

(Questions 1, 16)

You might think that choosing a solution is the end of a problem-solving process. In fact, it's simply the start of the next phase in problem solving: implementation. This involves lots of planning and preparation. If you haven't already developed a full Risk Analysis   in the evaluation phase, do so now. It's important to know what to be prepared for as you begin to roll out your proposed solution.

The type of planning that you need to do depends on the size of the implementation project that you need to set up. For small projects, all you'll often need are Action Plans   that outline who will do what, when, and how. Larger projects need more sophisticated approaches – you'll find out more about these in the Mind Tools Project Management section. And for projects that affect many other people, you'll need to think about Change Management   as well.

Here, it can be useful to conduct an Impact Analysis   to help you identify potential resistance as well as alert you to problems you may not have anticipated. Force Field Analysis   will also help you uncover the various pressures for and against your proposed solution. Once you've done the detailed planning, it can also be useful at this stage to make a final Go/No-Go Decision   , making sure that it's actually worth going ahead with the selected option.

Step 7: Sell the Idea

(Questions 5, 8)

As part of the planning process, you must convince other stakeholders that your solution is the best one. You'll likely meet with resistance, so before you try to “sell” your idea, make sure you've considered all the consequences.

As you begin communicating your plan, listen to what people say, and make changes as necessary. The better the overall solution meets everyone's needs, the greater its positive impact will be! For more tips on selling your idea, read our article on Creating a Value Proposition   and use our Sell Your Idea   Bite-Sized Training session.

Step 8: Act

(Questions 2, 11)

Finally, once you've convinced your key stakeholders that your proposed solution is worth running with, you can move on to the implementation stage. This is the exciting and rewarding part of problem solving, which makes the whole process seem worthwhile.

This action stage is an end, but it's also a beginning: once you've completed your implementation, it's time to move into the next cycle of problem solving by returning to the scanning stage. By doing this, you'll continue improving your organization as you move into the future.

Problem solving is an exceptionally important workplace skill.

Being a competent and confident problem solver will create many opportunities for you. By using a well-developed model like Simplexity Thinking for solving problems, you can approach the process systematically, and be comfortable that the decisions you make are solid.

Given the unpredictable nature of problems, it's very reassuring to know that, by following a structured plan, you've done everything you can to resolve the problem to the best of your ability.

This site teaches you the skills you need for a happy and successful career; and this is just one of many tools and resources that you'll find here at Mind Tools. Subscribe to our free newsletter , or join the Mind Tools Club and really supercharge your career!

Rate this resource

The Mind Tools Club gives you exclusive tips and tools to boost your career - plus a friendly community and support from our career coaches! 

problem solving ability test in psychology

Comments (220)

  • Over a month ago Sonia_H wrote Hi PANGGA, This is great news! Thanks for sharing your experience. We hope these 8 steps outlined will help you in multiple ways. ~Sonia Mind Tools Coach
  • Over a month ago PANGGA wrote Thank you for this mind tool. I got to know my skills in solving problem. It will serve as my guide on facing and solving problem that I might encounter.
  • Over a month ago Sarah_H wrote Wow, thanks for your very detailed feedback HardipG. The Mind Tools team will take a look at your feedback and suggestions for improvement. Best wishes, Sarah Mind Tools Coach

Please wait...

HYPOTHESIS AND THEORY article

Intelligence and creativity in problem solving: the importance of test features in cognition research.

\r\nSaskia Jaarsveld*

  • Center for Cognitive Science, Cognitive and Developmental Psychology Unit, University of Kaiserslautern, Kaiserslautern, Germany

This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g., convergent thinking to intelligence, divergent thinking to creativity. Knowledge domain and the possibilities it offers cognition are reflected in test results. We argue that (a) comparing results of tests with different problem spaces is more informative when cognition operates in both tests on an identical knowledge domain, and (b) intertwining of abilities related to both constructs can only be expected in tests developed to instigate such a process. Test features should guarantee that abilities can contribute to self-generated and goal-directed processes bringing forth solutions that are both new and applicable. We propose and discuss a test example that was developed to address these issues.

Much of cognition research is based on psychometric tests, such as tests assessing the constructs of intelligence or creativity. We argue that three test features must be explicitly considered, however, in order to reliably infer from individual’s test performance the underlying cognitive processes. These three test features are: definition of the construct, problem space , and knowledge domain .

The definition of the construct a test is to measure is most important in test construction and application, because cognitive processes reflect the possibilities a task offers. For instance, a test constructed to assess intelligence will operationalize the definition of this construct, being, in short, finding the correct answer. Also, the definition of a construct becomes important when selecting tests for the confirmation of a specific hypothesis. One can only find confirmation for a hypothesis if the chosen task instigates the necessary cognitive operations. For instance, in trying to confirm the assumed intertwining of certain cognitive abilities (e.g., convergent thinking and divergent thinking), tasks should be applied that have shown to yield the necessary cognitive process.

The second test feature, problem space , determines the degrees of freedom cognition has to its disposal in solving a problem. For instance, cognition will go through a wider search path when problem constraints are less well defined and, consequently, data will differ accordingly.

The third test feature, knowledge domain , is important when comparing results from two different tests. When tests differ in problem space, it is not advisable they should differ in knowledge domain. For instance, when studying the differences in cognitive abilities between tests constructed to asses convergent thinking (mostly defined problem space) and divergent thinking (mostly ill-defined problem space), in general test practice, both tests also differ in knowledge domain. Hence, data will reflect cognition operating not only in different problem spaces, but also operating on different knowledge domains, which makes the interpretation of results ambiguous.

The proposed approach for test development and test application holds the promise of, firstly, studying cognitive abilities in different problem spaces while operating on an identical knowledge domain. Although cognitions’ operations have been studied extensively and superbly in both contexts separately, they have rarely been studied in test situations where one or the other test feature is controlled for. The proposed approach also presents a unique method for studying thinking processes in which cognitive abilities intertwine. On the basis of defined abilities, tasks can be developed that have a higher probability of yielding the hypothesized results.

The construct of intelligence is defined as the ability to produce the single best (or correct) answer to a clearly defined question, such as a proof to a theorem ( Simon, 1973 ). It may also be seen as a domain-general ability ( g -factor; Spearman, 1904 ; Cattell, 1967 ) that has much in common with meta cognitive functions, such as metacognitive knowledge, metacognitive monitoring, and metacognitive control ( Saraç et al., 2014 ).

The construct of creativity, in contrast, is defined as the ability to innovate and move beyond what is already known ( Wertheimer, 1945/1968 ; Ghiselin, 1952/1985 ; Vernon, 1970 ). In other words, it emphasizes the aspect of innovation. This involves the ability to consider things from an uncommon perspective, transcend the old order ( Ghiselin, 1952/1985 ; Chi, 1997 ; Ward, 2007 ), and explore loosely associated ideas ( Guilford, 1950 ; Mednick, 1962 ; Koestler, 1964 ; Gentner, 1983 ; Boden, 1990 ; Christensen, 2007 ). Creativity could also be defined as the ability to generate a solution to problems with ill-defined problem spaces ( Wertheimer, 1945/1968 ; Getzels and Csikszentmihalyi, 1976 ). In this sense it involves the ability to identify problematic aspects of a given situation ( Ghiselin, 1952/1985 ) and, in a wider sense, the ability to define completely new problems ( Getzels, 1975 , 1987 ).

Guilford (1956) introduced the constructs of convergent thinking and divergent thinking abilities. Both thinking abilities are important because they allow us insights in human problem solving. On the basis of their definitions convergent and divergent thinking help us to structurally study human cognitive operations in different situations and over different developmental stages. Convergent thinking is defined as the ability to apply conventional and logical search, recognition, and decision-making strategies to stored information in order to produce an already known answer ( Cropley, 2006 ). Divergent thinking, by contrast, is defined as the ability to produce new approaches and original ideas by forming unexpected combinations from available information and by applying such abilities as semantic flexibility, and fluency of association, ideation, and transformation ( Guilford, 1959 , as cited in Cropley, 2006 , p. 1). Divergent thinking brings forth answers that may never have existed before and are often novel, unusual, or surprising ( Cropley, 2006 ).

Guilford (1967) introduced convergent and divergent thinking as part of a set of five operations that apply in his Structure of Intellect model (SOI model) on six products and four kinds of content, to produce 120 different factors of cognitive abilities. With the SOI model Guilford wanted to give the construct of intelligence a comprehensive model. He wanted the model to include all aspects of intelligence, many of which had been seriously neglected in traditional intelligence testing because of a persistent adherence to the belief in Spearman’s g ( Guilford, 1967 , p. vii). Hence, Guilford envisaged cognition to embrace, among other abilities, both convergent and divergent thinking abilities. After these new constructs were introduced and defined, tests for convergent and divergent thinking emerged. Despite the fact that Guilford reported significant loadings of tests for divergent production on tests constructed to measure convergent production ( Guilford, 1967 , p. 155), over the years, both modes of thinking were considered as separate identities where convergent thinking tests associated with intelligence and divergent thinking tests with creativity ( Cropley, 2006 ; Shye and Yuhas, 2004 ). Even intelligence tests that assess aspects of intelligence that supposedly reflect creative abilities do not actually measure creativity ( Kaufman, 2015 ).

The idea that both convergent and divergent thinking are important for solving problems, and that intelligence helps in the creative process, is not really new. In literature we find models of the creative process that define certain stages to convergent and divergent thinking; the stages of purposeful preparation at the start and those of critical verification at the end of the process, respectively ( Wallas, 1926 ; Webb Young , 1939/2003 ). In this view, divergent thinking enables the generation of new ideas whereas the exploratory activities of convergent thinking enable the conversion of ideas into something new and appropriate ( Cropley and Cropley, 2008 ).

We argue that studying the abilities of divergent and convergent thinking in isolation does not suffice to give us complete insight of all possible aspects of human problem solving, its constituent abilities and the structure of its processes. Processes that in a sequence of thoughts and actions lead to novel and adaptive productions ( Lubart, 2001 ) are more demanding of cognition for understanding the situation at hand and planning a path to a possible solution, than abilities involved in less complex situations ( Jaušovec, 1999 ). Processes that yield self-generated and goal-directed thought are the most complex cognitive processes that can be studied ( Beaty et al., 2016 ). Creative cognition literature is moving toward the view that especially in those processes that yield original and appropriate solutions within a specific context, convergent and divergent abilities intertwine ( Cropley, 2006 ; Ward, 2007 ; Gabora, 2010 ).

The approach of intertwining cognitive abilities is also developed within cognitive neuroscience by focusing on the intertwining of brain networks ( Beaty et al., 2016 ). In this approach divergent thinking relates to the default brain network. This network operates in defocused or associative mode of thought yielding spontaneous and self-generated cognition ( Beaty et al., 2015 ). Convergent thinking relates to the executive control network operating in focused or analytic modes of thought, yielding updating, shifting, and inhibition ( Benedek et al., 2014 ). Defocused attention theory ( Mendelssohn, 1976 ) states that less creative individuals operate with a more focused attention than do creative individuals. This theory argues that e.g., attending to two things at the same time, might result in one analogy, while attending to four things might yield six analogies ( Martindale, 1999 ).

In the process of shifting back and forth along the spectrum between associative and analytic modes of thinking, the fruits of associative thought become ingredients for analytic thought processes, and vice versa ( Gabora, 2010 ). In this process, mental imagery is involved as one sensory aspect of the human ability to gather and process information ( Jung and Haier, 2013 ). Mental imagery is fed by scenes in the environment that provide crucial visual clues for creative problem solving and actuates the need for sketching ( Verstijnen et al., 2001 ).

Creative problem solving processes often involve an interactive relationship between imagining, sketching, and evaluating the result of the sketch ( van Leeuwen et al., 1999 ). This interactive process evolves within a type of imagery called “visual reasoning” where forms and shapes are manipulated in order to specify the configurations and properties of the design entities ( Goldschmidt, 2013 ). The originality of inventions is predicted by the application of visualization, whereas their practicality is predicted by the vividness of imagery ( Palmiero et al., 2015 ). Imaginative thought processes emerge from our conceptual knowledge of the world that is represented in our semantic memory system. In constrained divergent thinking, the neural correlates of this semantic memory system partially overlap with those of the creative cognition system ( Abraham and Bubic, 2015 ).

Studies of convergent and divergent thinking abilities have yielded innumerable valuable insights on the cognitive and neurological aspects involved, e.g., reaction times, strategies, brain areas involved, mental representations, and short and long time memory components. Studies on the relationship between both constructs suggest that it is unlikely that individuals employ similar cognitive strategies when solving more convergent than more divergent thinking tasks ( Jaušovec, 2000 ). However, to arrive at a quality formulation the creative process cannot do without the application of both, convergent and divergent thinking abilities (e.g., Kaufmann, 2003 ; Runco, 2003 ; Sternberg, 2005 ; Dietrich, 2007 ; Cropley and Cropley, 2008 ; Silvia et al., 2013 ; Jung, 2014 ).

When it is our aim to study the networks addressed by the intertwining of convergent and divergent thinking processes that are considered to operate when new, original, and yet appropriate solutions are generated, then traditional thinking tests like intelligence tests and creativity tests are not appropriate; they yield processes related to the definition of one or the other type of construct.

Creative Reasoning Task

According to the new insights gained in cognition research, we need tasks that are developed with the aim to instigate precisely the kind of thinking processes we are looking for. Tasks should also provide a method of scoring independently the contribution of convergent and divergent thinking. As one possible solution for such tasks we present the Creative Reasoning Task (CRT; Jaarsveld, 2007 ; Jaarsveld et al., 2010 , 2012 , 2013 ).

The CRT presents participants with an empty 3 × 3 matrix and asks them to fill it out, as original and complex as possible, by creating components and the relationships that connect them. The created matrix can, in principle, be solved by another person. The creation of components is entirely free, as is the generation of the relationships that connects them into a completed pattern. Created matrices are scored with two sub scores; Relations , which scores the logical complexity of a matrix and is, therefore, considered a measure for convergent thinking, and Components and Specifications , which scores the originality, fluency, and flexibility and, therefore, is considered an indication for divergent thinking (for a more detailed description of the score method, see Appendix 1 in Supplementary Material).

Psychometric studies with the CRT showed, firstly, that convergent and divergent thinking abilities apply within this task and can be assessed independently. The CRT sub score Relations correlated with the Standard Progressive Matrices test (SPM) and the CRT sub score Components and Specifications correlated with a standard creativity test (TCT–DP, Test of Creative Thinking–Drawing Production; Urban and Jellen, 1995 ; Jaarsveld et al., 2010 , 2012 , 2013 ). Studies further showed that, although a correlation was observed for the intelligence and creativity test scores, no correlation was observed between the CRT sub scores relating to intelligent and creative performances ( Jaarsveld et al., 2012 , 2013 ; for further details about the CRT’s objectivity, validity, and reliability, see Appendix 2 in Supplementary Material).

Reasoning in creative thinking can be defined as the involvement of executive/convergent abilities in the inhibition of ideas and the updating of information ( Benedek et al., 2014 ). Jung (2014) describes a dichotomy for cognitive abilities with at one end the dedicated system that relies on explicit and conscious knowledge and at the other end the improvisational system that relies more upon implicit or unconscious knowledge systems. The link between explicit and implicit systems can actually be traced back to Kris’ psychoanalytic approach to creativity dating from the 1950s. The implicit system refers to Kris’ primary process of adaptive regression, where unmodulated thoughts intrude into consciousness; the explicit system refers to the secondary process, where the reworking and transformation of primary process material takes place through reality-oriented and ego-controlled thinking ( Sternberg and Lubart, 1999 ). The interaction between explicit and implicit systems can be seen to form the basis of creative reasoning, i.e., the cognitive ability to solve problems in an effective and adaptive way. This interaction evolved as a cognitive mechanism when human survival depended on finding effective solutions to both common and novel problem situations ( Gabora and Kaufman, 2010 ). Creative reasoning solves that minority of problems that are unforeseen and yet of high adaptability ( Jung, 2014 ).

Hence, common tests are insufficient when it comes to solving problems that are unforeseen and yet of high adaptability, because they present problems that are either unforeseen and measure certain abilities contained in the construct of creativity or they address adaptability and measure certain abilities contained in the construct of intelligence. The CRT presents participants with a problem that they could not have foreseen; the form is blank and offers no stimuli. All tests, even creativity tests, present participants with some kind of stimuli. The CRT addresses adaptability; to invent from scratch a coherent structure that can be solved by another person, like creating a crossword puzzle. Problems, that are unforeseen and of high adaptability, are solved by the application of abilities from both constructs.

Neuroscience of Creative Cognition

Studies in neuroscience showed that cognition operating in ill-defined problem space not only applies divergent thinking but also benefits from additional convergent operations ( Gabora, 2010 ; Jung, 2014 ). Understanding creative cognition may be advanced when we study the flow of information among brain areas ( Jung et al., 2010 ).

In a cognitive neuroscience study with the CRT we focused on the cognitive process evolving within this task. Participants performed the CRT while EEG alpha activity was registered. EEG alpha synchronization in frontal areas is understood as an indication of top-down control ( Cooper et al., 2003 ). When observed in frontal areas, for divergent and convergent thinking tasks, it may not reflect a brain state that is specific for creative cognition but could be attributed to the high processing demands typically involved in creative thinking ( Benedek et al., 2011 ). Top-down control, relates to volitionally focusing attention to task demands ( Buschman and Miller, 2007 ). That this control plays a role in tasks with an ill-defined problem space showed when electroencephalography (EEG) alpha synchronization was stronger for individuals engaged in creative ideation tasks compared to an intelligence related tasks ( Fink et al., 2007 , 2009 ; Fink and Benedek, 2014 ). This activation was also found for the CRT; task related alpha synchronization showed that convergent thinking was integrated in the divergent thinking processes. Analyzes of the stages in the CRT process showed that this alpha synchronization was especially visible at the start of the creative process at prefrontal and frontal sites when information processing was most demanding, i.e., due to multiplicity of ideas, and it was visible at the end of the process, due to narrowing down of alternatives ( Jaarsveld et al., 2015 ).

A functional magnetic resonance imaging (fMRI) study ( Beaty et al., 2015 ) with a creativity task in which cognition had to meet specific constraints, showed the networks involved. The default mode network which drives toward abstraction and metaphorical thinking and the executive control network driving toward certainty ( Jung, 2014 ). Control involves not only maintenance of patterns of activity that represent goals and the means to achieve those ( Miller and Cohen, 2001 ), but also their voluntary suppression when no longer needed, as well as the flexible shift between different goals and mental sets ( Abraham and Windmann, 2007 ). Attention can be focused volitionally by top-down signals derived from task demands and automatically by bottom-up signals from salient stimuli ( Buschman and Miller, 2007 ). Intertwining between top-down and bottom-up attention processes in creative cognition ensures a broadening of attention in free associative thinking ( Abraham and Windmann, 2007 ).

These studies support and enhance the findings of creative cognition research in showing that the generation of original and applicable ideas involves an intertwining between different abilities, networks, and attention processes.

Problem Space

A problem space is an abstract representation, in the mind of the problem solver, of the encountered problem and of the asked for solution ( Simon and Newell, 1971 ; Simon, 1973 ; Hayes and Flowers, 1986 ; Kulkarni and Simon, 1988 ; Runco, 2007 ). The space that comes with a certain problem can, according to the constraints that are formulated for the solution, be labeled well-defined or ill-defined ( Simon and Newell, 1971 ). Consequently, the original problems are labeled closed and open problems, respectively ( Jaušovec, 2000 ).

A problem space contains all possible states that are accessible to the problem solver from the initial state , through iterative application of transformation rules , to the goal state ( Newell and Simon, 1972 ; Anderson, 1983 ). The initial state presents the problem solver with a task description that defines which requirements a solution has to answer. The goal state represents the solution. The proposed solution is a product of the application of transformation rules (algorithms and heuristics) on a series of successive intermediate solutions. The proposed solution is also a product of the iterative evaluations of preceding solutions and decisions based upon these evaluations ( Boden, 1990 ; Gabora, 2002 ; Jaarsveld and van Leeuwen, 2005 ; Goldschmidt, 2014 ). Whether all possible states need to be passed through depends on the problem space being well or ill-defined and this, in turn, depends on the character of the task descriptions.

When task descriptions clearly state which requirements a solution has to answer then the inferences made will show little idiosyncratic aspects and will adhere to the task constraints. As a result, fewer options for alternative paths are open to the problem solver and search for a solution evolves in a well-defined space. Vice versa, when task or problem descriptions are fuzzy and under specified, the problem solver’s inferences are more idiosyncratic; the resulting process will evolve within an ill-defined space and will contain more generative-evaluative cycles in which new goals are set, and the cycle is repeated ( Dennett, 1978 , as cited in Gabora, 2002 , p. 126).

Tasks that evolve in defined problem space are, e.g., traditional intelligence tests (e.g., Wechsler Adult Intelligence Scale, WAIS; and SPM, Raven, 1938/1998 ). The above tests consist of different types of questions, each testing a different component of intelligence. They are used in test practice to assess reasoning abilities in diverse domains, such as, abstract, logical, spatial, verbal, numerical, and mathematical domains. These tests have clearly stated task descriptions and each item has one and only one correct solution that has to be generated from memory or chosen from a set of alternatives, like in multiple choice formats. Tests can be constructed to assess crystallized or fluid intelligence. Crystallized intelligence represents abilities acquired through learning, practice, and exposure to education, while fluid intelligence represents a more basic capacity that is valuable to reasoning and problem solving in contexts not necessarily related to school education ( Carroll, 1982 ).

Tasks that evolve in ill-defined problem space are, e.g., standard creativity tests. These types of test ask for a multitude of ideas to be generated in association with a given item or situation (e.g., “think of as many titles for this story”). Therefore, they are also labeled as divergent thinking test. Although they assess originality, fluency, flexibility of responses, and elaboration, they are not constructed, however, to score appropriateness or applicability. Divergent thinking tests assess one limited aspect of what makes an individual creative. Creativity depends also on variables like affect and intuition; therefore, divergent thinking can only be considered an indication of an individual’s creative potential ( Runco, 2008 ). More precisely, divergent thinking explains just under half of the variance in adult creative potential, which is more than three times that of the contribution of intelligence ( Plucker, 1999 , p. 103). Creative achievement , by contrast, is commonly assessed by means of self-reports such as biographical questionnaires in which participants indicate their achievement across various domains (e.g., literature, music, or theater).

Studies with the CRT showed that problem space differently affects processing of and comprehension of relationships between components. Problem space did not affect the ability to process complex information. This ability showed equal performance in well and ill-defined problem spaces ( Jaarsveld et al., 2012 , 2013 ). However, problem space did affect the comprehension of relationships, which showed in the different frequencies of relationships solved and created ( Jaarsveld et al., 2010 , 2012 ). Problem space also affected the neurological activity as displayed when individuals solve open or closed problems ( Jaušovec, 2000 ).

Problem space further affected trends over grade levels of primary school children for relationships solved in well-defined and applied in ill-defined problem space. Only one of the 12 relationships defined in the CRT, namely Combination, showed an increase with grade for both types of problem spaces ( Jaarsveld et al., 2013 ). In the same study, cognitive development in the CRT showed in the shifts of preference for a certain relationship. These shifts seem to correspond to Piaget’s developmental stages ( Piaget et al., 1977 ; Siegler, 1998 ) which are in evidence in the CRT, but not in the SPM ( Jaarsveld et al., 2013 ).

Design Problems

A sub category of problems with an ill-defined problem space are represented by design problems. In contrast to divergent thinking tasks that ask for the generation of a multitude of ideas, in design tasks interim ideas are nurtured and incrementally developed until they are appropriate for the task. Ideas are rarely discarded and replaced with new ideas ( Goel and Pirolli, 1992 ). The CRT could be considered a design problem because it yields (a) one possible solution and (b) an iterative thinking process that involves the realization of a vague initial idea. In the CRT a created matrix, which is a closed problem, is created within an ill-defined problem space. Design problems can be found, e.g., in engineering, industrial design, advertising, software design, and architecture ( Sakar and Chakrabarti, 2013 ), however, they can also be found in the arts, e.g., poetry, sculpting, and dance geography.

These complex problems are partly determined by unalterable needs, requirements and intentions but the major part of the design problem is undetermined ( Dorst, 2004 ). This author points out that besides containing an original and a functional value, these types of problems contain an aesthetic value. He further states that the interpretation of the design problem and the creation and selection of possible suitable solutions can only be decided during the design process on the basis of proposals made by the designer.

In design problems the generation stage may be considered a divergent thinking process. However, not in the sense that it moves in multiple directions or generates multiple possibilities as in a divergent thinking tests, but in the sense that it unrolls by considering an initially vague idea from different perspectives until it comes into focus and requires further processing to become viable. These processes can be characterized by a set of invariant features ( Goel and Pirolli, 1992 ), e.g., structuring. iteration , and coherence .

Structuring of the initial situation is required in design processes before solving can commence. The problem contains little structured and clear information about its initial state and about the requirements of its solution. Therefore, design problems allow or even require re-interpretation of transformation rules; for instance, rearranging the location of furniture in a room according to a set of desirable outcomes. Here one uncovers implicit requirements that introduce a set of new transformations and/or eliminate existing ones ( Barsalou, 1992 ; Goel and Pirolli, 1992 ) or, when conflicting requirements arise, one creates alternatives and/or introduces new trade-offs between the conflicting constraints ( Yamamoto et al., 2000 ; Dorst, 2011 ).

A second aspect of design processes is their iterative character. After structuring and planning a vague idea emerges, which is the result of the merging of memory items. A vague idea is a cognitive structure that, halfway the creative process is still ill defined and, therefore, can be said to exist in a state of potentiality ( Gabora and Saab, 2011 ). Design processes unroll in an iterative way by the inspection and adjustment of the generated ideas ( Goldschmidt, 2014 ). New meanings are created and realized while the creative mind imposes its own order and meaning on the sensory data and through creative production furthers its own understanding of the world ( Arnheim, 1962/1974 , as cited in Grube and Davis, 1988 , pp. 263–264).

A third aspect of design processes is coherence. Coherence theories characterize coherence in, for instance, philosophical problems and psychological processes, in terms of maximal satisfaction of multiple constraints and compute coherence by using, a.o., connectionist algorithms ( Thagard and Verbeurgt, 1998 ). Another measure of coherence is characterized as continuity in design processes. This measure was developed for a design task ( Jaarsveld and van Leeuwen, 2005 ) and calculated by the occurrence of a given pair of objects in a sketch, expressed as a percentage of all the sketches of a series. In a series of sketches participants designed a logo for a new soft drink. Design series strong in coherence also received a high score for their final design, as assessed by professionals in various domains. Indicating that participants with a high score for the creative quality of their final sketch seemed better in assessing their design activity in relation to the continuity in the process and, thereby, seemed better in navigating the ill-defined space of a design problem ( Jaarsveld and van Leeuwen, 2005 ). In design problems the quality of cognitive production depends, in part, on the abilities to reflect on one’s own creative behavior ( Boden, 1996 ) and to monitor how far along in the process one is in solving it ( Gabora, 2002 ). Hence, design problems are especially suited to study more complex problem solving processes.

Knowledge Domain

Knowledge domain represents disciplines or fields of study organized by general principles, e.g., domains of various arts and sciences. It contains accumulated knowledge that can be divided in diverse content domains, and the relevant algorithms and heuristics. We also speak of knowledge domains when referring to, e.g., visuo-spatial and verbal domains. This latter differentiation may refer to the method by which performance in a certain knowledge domain is assessed, e.g., a visuo-spatial physics task that assesses the content domain of the workings of mass and weights of objects.

In comparing tests results, we should keep in mind that apart from reflecting cognitive processes evolving in different problem spaces, the results also arise from cognition operating on different knowledge domains. We argue that, the still contradictory and inconclusive discussion about the relationship between intelligence and creativity ( Silvia, 2008 ), should involve the issue of knowledge domain.

Intelligence tests contain items that pertain to, e.g., verbal, abstract, mechanical and spatial reasoning abilities, while their content mostly operates on knowledge domains that are related to contents contained in school curricula. Items of creativity tests, by contrast, pertain to more idiosyncratic knowledge domains, their contents relating to associations between stored personal experiences ( Karmiloff-Smith, 1992 ). The influence of knowledge domain on the relationships between different test scores was already mentioned by Guilford (1956 , p. 169). This author expected a higher correlation between scores from a typical intelligence test and a divergent thinking test than between scores from two divergent thinking tests because the former pair operated on identical information and the latter pair on different information.

Studies with the CRT showed that when knowledge domain is controlled for, the development of intelligence operating in ill-defined problem space does not compare to that of traditional intelligence but develops more similarly to the development of creativity ( Welter et al., in press ).

Relationship Intelligence and Creativity

The Threshold theory ( Guilford, 1967 ) predicts a relationship between intelligence and creativity up to approximately an intelligence quotient (IQ) level of 120 but not beyond ( Lubart, 2003 ; Runco, 2007 ). Threshold theory was corroborated when creative potential was found to be related to intelligence up to certain IQ levels; however, the theory was refuted, when focusing on achievement in creative domains; it showed that creative achievement benefited from higher intelligence even at fairly high levels of intellectual ability ( Jauk et al., 2013 ).

Distinguishing between subtypes of general intelligence known as fluent and crystallized intelligence ( Cattell, 1967 ), Sligh et al. (2005) observed an inverse threshold effect with fluid IQ: a correlation with creativity test scores in the high IQ group but not in the average IQ group. Also creative achievement showed to be affected by fluid intelligence ( Beaty et al., 2014 ). Intelligence, defined as fluid IQ, verbal fluency, and strategic abilities, showed a higher correlation with creativity scores ( Silvia, 2008 ) than when defined as crystallized intelligence. Creativity tests, which involved convergent thinking (e.g., Remote Association Test; Mednick, 1962 ) showed higher correlations with intelligence than ones that involved only divergent thinking (e.g., the Alternate Uses Test; Guilford et al., 1978 ).

That the Remote Association test also involves convergent thinking follows from the instructions; one is asked, when presented with a stimulus word (e.g., table) to produce the first word one thinks of (e.g., chair). The word pair table–chair is a common association, more remote is the pair table–plate, and quite remote is table–shark. According to Mednick’s theory (a) all cognitive work is done essentially by combining or associating ideas and (b) individuals with more commonplace associations have an advantage in well-defined problem spaces, because the class of relevant associations is already implicit in the statement of the problem ( Eysenck, 2003 ).

To circumvent the problem of tests differing in knowledge domain, one can develop out of one task a more divergent and a more convergent thinking task by asking, on the one hand, for the generation of original responses, and by asking, on the other hand, for more common responses ( Jauk et al., 2012 ). By changing the instruction of a task, from convergent to divergent, one changes the constraints the solution has to answer and, thereby, one changes for cognition its freedom of operation ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ). However, asking for more common responses is still a divergent thinking task because it instigates a generative and ideational process.

Indeed, studying the relationship between intelligence and creativity with knowledge domain controlled for yielded different results as defined in the Threshold theory. A study in which knowledge domain was controlled for showed, firstly, that intelligence is no predictor for the development of creativity ( Welter et al., 2016 ). Secondly, that the relationship between scores of intelligence and creativity tests as defined under the Threshold theory was only observed in a small subset of primary school children, namely, female children in Grade 4 ( Welter et al., 2016 ). We state that relating results of operations yielded by cognitive abilities performing in defined and in ill-defined problem spaces can only be informative when it is ensured that cognitive processes also operate on an identical knowledge domain.

Intertwining of Cognitive Abilities

Eysenck (2003) observed that there is little justification for considering the constructs of divergent and convergent thinking in categorical terms in which one construct excludes the other. In processes that yield original and appropriate solutions convergent and divergent thinking both operate on the same large knowledge base and the underlying cognitive processes are not entirely dissimilar ( Eysenck, 2003 , p. 110–111).

Divergent thinking is especially effective when it is coupled with convergent thinking ( Runco, 2003 ; Gabora and Ranjan, 2013 ). A design problem study ( Jaarsveld and van Leeuwen, 2005 ) showed that divergent production was active throughout the design, as new meanings are continuously added to the evolving structure ( Akin, 1986 ), and that convergent production was increasingly important toward the end of the process, as earlier productions are wrapped up and integrated in the final design. These findings are in line with the assumptions of Wertheimer (1945/1968) who stated that thinking within ill-defined problem space is characterized by two points of focus; one is to work on the parts, the other to make the central idea clearer.

Parallel to the discussion about the intertwining of convergent and divergent thinking abilities in processes that evolve in ill-defined problem space we find the discussion about how intelligence may facilitate creative thought. This showed when top-down cognitive control advanced divergent processing in the generation of original ideas and a certain measure of cognitive inhibition advanced the fluency of idea generation ( Nusbaum and Silvia, 2011 ). Fluid intelligence and broad retrieval considered as intelligence factors in a structural equation study contributed both to the production of creative ideas in a metaphor generation task ( Beaty and Silvia, 2013 ). The notion that creative thought involves top-down, executive processes showed in a latent variable analysis where inhibition primarily promoted the fluency of ideas, and intelligence promoted their originality ( Benedek et al., 2012 ).

Definitions of the Constructs Intelligence and Creativity

The various definitions of the constructs of intelligence and creativity show a problematic overlap. This overlap stems from the enormous endeavor to unanimously agree on valid descriptions for each construct. Spearman (1927) , after having attended many symposia that aimed at defining intelligence, stated that “in truth, ‘intelligence’ has become a mere vocal sound, a word with so many meanings that finally it has none” (p. 14).

Intelligence is expressed in terms of adaptive, goal-directed behavior; and the subset of such behavior that is labeled “intelligent” seems to be determined in large part by cultural or societal norms ( Sternberg and Salter, 1982 ). The development of the IQ measure is discussed by Carroll (1982) : “Binet (around 1905) realized that intelligent behavior or mental ability can be ranged along a scale. Not much later, Stern (around 1912) noticed that, as chronological age increased, variation in mental age changes proportionally. He developed the IQ ratio, whose standard deviation would be approximately constant over chronological age if mental age was divided by chronological age. With the development of multiple-factor-analyses (Thurstone, around 1935) it could be shown that intelligence is not a simple unitary trait because at least seven somewhat independent factors of mental ability were identified.”

Creativity is defined as a combined manifestation of novelty and usefulness ( Jung et al., 2010 ). Although it is identified with divergent thinking, and performance on divergent thinking tasks predicts, e.g., quantity of creative achievements ( Torrance, 1988 , as cited in Beaty et al., 2014 ) and quality of creative performance ( Beaty et al., 2013 ), it cannot be identified uniquely with divergent thinking.

Divergent thinking often leads to highly original ideas that are honed to appropriate ideas by evaluative processes of critical thinking, and valuative and appreciative considerations ( Runco, 2008 ). Divergent thinking tests should be more considered as estimates of creative problem solving potential rather than of actual creativity ( Runco, 1991 ). Divergent thinking is not specific enough to help us understand what, exactly, are the mental processes—or the cognitive abilities—that yield creative thoughts ( Dietrich, 2007 ).

Although current definitions of intelligence and creativity try to determine for each separate construct a unique set of cognitive abilities, analyses show that definitions vary in the degree to which each includes abilities that are generally considered to belong to the other construct ( Runco, 2003 ; Jaarsveld et al., 2012 ). Abilities considered belonging to the construct of intelligence such as hypothesis testing, inhibition of alternative responses, and creating mental images of new actions or plans are also considered to be involved in creative thinking ( Fuster, 1997 , as cited in Colom et al., 2009 , p. 215). The ability, for instance, to evaluate , which is considered to belong to the construct of intelligence and assesses the match between a proposed solution and task constraints, has long been considered to play a role in creative processes that goes beyond the mere generation of a series of ideas as in creativity tasks ( Wallas, 1926 , as cited in Gabora, 2002 , p. 1; Boden, 1990 ).

The Geneplore model ( Finke et al., 1992 ) explicitly models this idea; after stages in which objects are merely generated, follow phases in which an object’s utility is explored and estimated. The generation phase brings forth pre inventive objects, imaginary objects that are generated without any constraints in mind. In exploration, these objects are evaluated for their possible functionalities. In anticipating the functional characteristics of generated ideas, convergent thinking is needed to apprehend the situation, make evaluations ( Kozbelt, 2008 ), and consider the consequences of a chosen solution ( Goel and Pirolli, 1992 ). Convergent reasoning in creativity tasks invokes criteria of functionality and appropriateness ( Halpern, 2003 ; Kaufmann, 2003 ), goal directedness and adaptive behavior ( Sternberg, 1982 ), as well as the abilities of planning and attention. Convergent thinking stages may even require divergent thinking sub processes to identify restrictions on proposed new ideas and suggest requisite revision strategies ( Mumford et al., 2007 ). Hence, evaluation, which is considered to belong to the construct of intelligence, is also functional in creative processes.

In contrast, the ability of flexibility , which is considered to belong to the construct of creativity and denotes an openness of mind that ensures the generation of ideas from different domains, showed, as a factor component for latent divergent thinking, a relationship with intelligence ( Silvia, 2008 ). Flexibility was also found to play an important role in intelligent behavior where it enables us to do novel things smartly in new situations ( Colunga and Smith, 2008 ). These authors studied children’s generalizations of novel nouns and concluded that if we are to understand human intelligence, we must understand the processes that make inventiveness. They propose to include the construct of flexibility within that of intelligence. Therefore, definitions of the constructs we are to measure affect test construction and the resulting data. However, an overlap between definitions, as discussed, yields a test diversity that makes it impossible to interpret the different findings across studies with any confidence ( Arden et al., 2010 ). Also Kim (2005) concluded that because of differences in tests and administration methods, the observed correlation between intelligence and creativity was negligible. As the various definitions of the constructs of intelligence and creativity show problematic overlap, we propose to circumvent the discussion about which cognitive abilities are assessed by which construct, and to consider both constructs as being involved in one design process. This approach allows us to study the contribution to this process of the various defined abilities, without one construct excluding the other.

Reasoning Abilities

The CRT is a psychometrical tool constructed on the basis of an alternative construct of human cognitive functioning that considers creative reasoning as a thinking process understood as the cooperation between cognitive abilities related to intelligent and creative thinking.

In generating relationships for a matrix, reasoning and more specifically the ability of rule invention is applied. The ability of rule invention could be considered as an extension of the sequence of abilities of rule learning, rule inference, and rule application, implying that creativity is an extension of intelligence ( Shye and Goldzweig, 1999 ). According to this model, we could expect different results between a task assessing abilities of rule learning and rule inference, and a task assessing abilities of rule application. In two studies rule learning and rule inference was assessed with the RPM and rule application was assessed with the CRT. Results showed that from Grades 1 to 4, the frequencies of relationships applied did not correlate with those solved ( Jaarsveld et al., 2010 , 2012 ). Results showed that performance in the CRT allows an insight of cognitive abilities operating on relationships among components that differs from the insight based on performance within the same knowledge domain in a matrix solving task. Hence, reasoning abilities lead to different performances when applied in solving closed as to open problems.

We assume that reasoning abilities are more clearly reflected when one formulates a matrix from scratch; in the process of thinking and drawing one has, so to speak, to solve one’s own matrix. In doing so one explains to oneself the relationship(s) realized so far and what one would like to attain. Drawing is thinking aloud a problem and aids the designer’s thinking processes in providing some “talk-back” ( Cross and Clayburn Cross, 1996 ). Explanatory activity enhances learning through increased depth of processing ( Siegler, 2005 ). Analyzing explanations of examples given with physics problems showed that they clarify and specify the conditions and consequences of actions, and that they explicate tacit knowledge; thereby enhancing and completing an individual’s understanding of principles relevant to the task ( Chi and VanLehn, 1991 ). Constraint of the CRT is that the matrix, in principle, can be solved by another person. Therefore, in a kind of inner explanatory discussion, the designer makes observations of progress, and uses evaluations and decisions to answer this constraint. Because of this, open problems where certain constraints have to be met, constitute a powerful mechanism for promoting understanding and conceptual advancement ( Chi and VanLehn, 1991 ; Mestre, 2002 ; Siegler, 2005 ).

Convergent and divergent thinking processes have been studied with a variety of intelligence and creativity tests, respectively. Relationships between performances on these tests have been demonstrated and a large number of research questions have been addressed. However, the fact that intelligence and creativity tests vary in the definition of their construct, in their problem space, and in their knowledge domain, poses methodological problems regarding the validity of comparisons of test results. When we want to focus on one cognitive process, e.g., intelligent thinking, and on its different performances in well or ill-defined problem situations, we need pairs of tasks that are constructed along identical definitions of the construct to be assessed, that differ, however, in the description of their constraints but are identical regarding their knowledge domain.

One such possible pair, the Progressive Matrices Test and the CRT was suggested here. The CRT was developed on the basis of creative reasoning , a construct that assumes the intertwining of intelligent and creativity related abilities when looking for original and applicable solutions. Matched with the Matrices test, results indicated that, besides similarities, intelligent thinking also yielded considerable differences for both problem spaces. Hence, with knowledge domain controlled, and only differences in problem space remaining, comparison of data yielded new results on intelligence’s operations. Data gathered from intelligence and creativity tests, whether they are performance scores or physiological measurements on the basis of, e.g., EEG, and fMRI methods, are reflections of cognitive processes performing on a certain test that was constructed on the basis of a certain definition of the construct it was meant to measure. Data are also reflections of the processes evolving within a certain problem space and of cognitive abilities operating on a certain knowledge domain.

Data can unhide brain networks that are involved in the performance of certain tasks, e.g., traditional intelligence and creativity tests, but data will always be related to the characteristics of the task. The characteristics of the task, such as problem space and knowledge domain originated at the construction of the task, and the construction, on its turn, is affected by the definition of the construct the task is meant to measure.

Here we present the CRT as one possible solution for the described problems in cognition research. However, for research on relationships among test scores other pairs of tests are imaginable, e.g., pairs of tasks operating on the same domain where one task has a defined problem space and the other one an ill-defined space. It is conceivable that pairs of test could operate, besides on the domain of mathematics, on content of e.g., visuo-spatial, verbal, and musical domains. Pairs of test have been constructed by changing the instruction of a task; instructions instigated a more convergent or a more a divergent mode of response ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ; Beaty et al., 2013 ).

The CRT involves the creation of components and their relationships for a 3 × 3 matrix. Hence, matrices created in the CRT are original in the sense that they all bear individual markers and they are applicable in the sense, that they can, in principle, be solved by another person. We showed that the CRT instigates a real design process; creators’ cognitive abilities are wrapped up in a process that should produce a closed problem within an ill-defined problem space.

For research on the relationship among convergent and divergent thinking, we need pairs of test that differ in the problem spaces related to each test but are identical in the knowledge domain on which cognition operates. The test pair of RPM and CRT provides such a pair. For research on the intertwining of convergent and divergent thinking, we need tasks that measure more than tests assessing each construct alone. We need tasks that are developed on the definition of intertwining cognitive abilities; the CRT is one such test.

Hence, we hope to have sufficiently discussed and demonstrated the importance of the three test features, construct definition, problem space, and knowledge domain, for research questions in creative cognition research.

Author Contributions

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00134/full#supplementary-material

Abraham, A., and Bubic, A. (2015). Semantic memory as the root of imagination. Front. Psychol. 6:325. doi: 10.3389/fpsyg.2015.00325

PubMed Abstract | CrossRef Full Text | Google Scholar

Abraham, A., and Windmann, S. (2007). Creative cognition: the diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods 42, 38–48. doi: 10.1016/j.ymeth.2006.12.007

Akin, O. (1986). Psychology of Architectural Design London: Pion.

Google Scholar

Anderson, J. R. (1983). The Architecture of Cognition Cambridge, MA: Harvard University Press.

Arden, R., Chavez, R. S., Grazioplene, R., and Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behav. Brain Res. 214, 143–156. doi: 10.1016/j.bbr.2010.05.015

Arnheim, R. (1962/1974). Picasso’s Guernica Berkeley: University of California Press.

Barsalou, L. W. (1992). Cognitive Psychology: An Overview for Cognitive Scientists Hillsdale, NJ: LEA.

Beaty, R. E., Benedek, M., Silvia, P. J., and Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 87–95. doi: 10.1016/j.tics.2015.10.004

Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., et al. (2015). Personality and complex brain networks: the role of openness to experience in default network efficiency. Hum. Brain Mapp. 37, 773–777. doi: 10.1002/hbm.23065

Beaty, R. E., Nusbaum, E. C., and Silvia, P. J. (2014). Does insight problem solving predict real-world creativity? Psychol. Aesthet. Creat. Arts 8, 287–292. doi: 10.1037/a0035727

CrossRef Full Text | Google Scholar

Beaty, R. E., and Silvia, R. E. (2013). Metaphorically speaking: cognitive abilities and the production of figurative language. Mem. Cognit. 41, 255–267. doi: 10.3758/s13421-012-0258-5

Beaty, R. E., Smeekens, B. A., Silvia, P. J., Hodges, D. A., and Kane, M. J. (2013). A first look at the role of domain-general cognitive and creative abilities in jazz improvisation. Psychomusicology 23, 262–268. doi: 10.1037/a0034968

Benedek, M., Bergner, S., Konen, T., Fink, A., and Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49, 3505–3511. doi: 10.1016/j.neuropsychologia.2011.09.004

Benedek, M., Franz, F., Heene, M., and Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Pers. Individ. Dif. 53, 480–485. doi: 10.1016/j.paid.2012.04.014

Benedek, M., Jauk, E., Sommer, M., Arendasy, M., and Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity. Intelligence 46, 73–83. doi: 10.1016/j.intell.2014.05.007

Boden, M. A. (1990). The Creative Mind: Myths and Mechanisms London: Abacus.

Boden, M. A. (1996). Artificial Intelligence New York, NY: Academic.

Buschman, T. J., and Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862. doi: 10.1126/science.1138071

Carroll, J. B. (1982). “The measurement of Intelligence,” in Handbook of Human Intelligence , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 29–120.

Cattell, R. B. (1967). The theory of fluid and crystallized general intelligence checked at the 5-6 year-old level. Br. J. Educ. Psychol. 37, 209–224. doi: 10.1111/j.2044-8279.1967.tb01930.x

Chi, M. T. H. (1997). “Creativity: Shifting across ontological categories flexibly,” in Creative Thought: An Investigation of Conceptual Structures and Processes , eds T. Ward, S. Smith, and J. Vaid (Washington, DC: American Psychological Association), 209–234.

Chi, M. T. H., and VanLehn, K. A. (1991). The content of physics self-explanations. J. Learn. Sci. 1, 69–105. doi: 10.1207/s15327809jls0101_4

Christensen, B. T. (2007). The relationship of analogical distance to analogical function and preinventive structure: the case of engineering design. Mem. Cogn. 35, 29–38. doi: 10.3758/BF03195939

Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. A., Shih, P. C., et al. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37, 124–135. doi: 10.1016/j.intell.2008.07.007

Colunga, E., and Smith, L. B. (2008). Flexibility and variability: essential to human cognition and the study of human cognition. New Ideas Psychol. 26, 158–192. doi: 10.1016/j.newideapsych.2007.07.012

Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., and Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 47, 65–74. doi: 10.1016/S0167-8760(02)00107-1

Cropley, A. (2006). In praise of convergent thinking. Creat. Res. J. 18, 391–404. doi: 10.1207/s15326934crj1803_13

Cropley, A., and Cropley, D. (2008). Resolving the paradoxes of creativity: an extended phase model. Camb. J. Educ. 38, 355–373. doi: 10.1080/03057640802286871

Cross, N., and Clayburn Cross, A. (1996). Winning by design: the methods of Gordon Murray, racing car designer. Des. Stud. 17, 91–107. doi: 10.1016/0142-694X(95)00027-O

Dennett, D. (1978). Brainstorms: Philosophical Essays on Mind and Psychology Montgomery, VT: Bradford Books.

Dietrich, A. (2007). Who’s afraid of a cognitive neuroscience of creativity? Methods 42, 22–27. doi: 10.1016/j.ymeth.2006.12.009

Dorst, K. (2004). The problem of design problems: Problem solving and design expertise. J. Design Res. 4. doi: 10.1504/JDR.2004.009841

Dorst, K. (2011). The core of ‘design thinking’ and its application. Des. Stud. 32, 521–532. doi: 10.1016/j.destud.2011.07.006

Eysenck, H. J. (2003). “Creativity, personality and the convergent-divergent continuum,” in Critical Creative Processes , ed. M. A. Runco (Cresskill, NJ: Hampton Press), 95–114.

Fink, A., and Benedek, M. (2014). EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123. doi: 10.1016/j.neubiorev.2012.12.002

Fink, A., Benedek, M., Grabner, R. H., Staudt, B., and Neubauer, A. C. (2007). Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. Methods 42, 68–76. doi: 10.1016/j.ymeth.2006.12.001

Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009). The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum. Brain Mapp. 30, 734–748. doi: 10.1002/hbm.20538

Finke, R. A., Ward, T. B., and Smith, S. M. (1992). Creative Cognition: Theory, Research, and Applications Cambridge, MA: MIT Press.

Fuster, J. M. (1997). Network memory. Trends Neurosci. 20, 451–459. doi: 10.1016/S0166-2236(97)01128-4

Gabora, L. (2002). “Cognitive mechanisms underlying the creative process,” in Proceedings of the Fourth International Conference on Creativity and Cognition , eds T. Hewett and T. Kavanagh (Loughborough: Loughborough University), 126–133.

Gabora, L. (2010). Revenge of the ‘neurds’: Characterizing creative thought in terms of the structure and dynamics of human memory. Creat. Res. J. 22, 1–13. doi: 10.1080/10400410903579494

Gabora, L., and Kaufman, S. B. (2010). “Evolutionary approaches to creativity,” in The Cambridge Handbook of Creativity , eds J. S. Kaufman and R. J. Sternberg (Cambridge: Cambridge University Press), 279–300.

Gabora, L., and Ranjan, A. (2013). “How insight emerges in a distributed, content-addressable memory,” in The Neuroscience of Creativity , eds A. Bristol, O. Vartanian, and J. Kaufman (Cambridge: MIT Press), 19–43.

Gabora, L., and Saab, A. (2011). “Creative inference and states of potentiality in analogy problem solving,” in Proceedings of the Annual Meeting of the Cognitive Science Society , Boston, MA, 3506–3511.

Gentner, D. (1983). Structure mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170. doi: 10.1207/s15516709cog0702_3

Getzels, J. W. (1975). Problem finding and the inventiveness of solutions. J. Creat. Behav. 9, 12–18. doi: 10.1002/j.2162-6057.1975.tb00552.x

Getzels, J. W. (1987). “Creativity, intelligence, and problem finding: retrospect and prospect,” in Frontiers of Creativity Research: Beyond the Basics , ed. S. G. Isaksen (Buffalo, NY: Bearly Limited), 88–102.

Getzels, J. W., and Csikszentmihalyi, M. (1976). The Creative Vision: A Longitudinal Study of Problem Finding in Art New York, NY: Wiley.

Ghiselin, B. (ed.). (1952/1985). The Creative Process Los Angeles: University of California.

Goel, V., and Pirolli, P. (1992). The structure of design problem spaces. Cogn. Sci. 16, 395–429. doi: 10.1207/s15516709cog1603_3

Goldschmidt, G. (2013). “A micro view of design reasoning: two-way shifts between embodiment and rationale,” in Creativity and Rationale: Enhancing Human Experience by Design, Human-Computer Interaction Series , ed. J. M. Carroll (London: Springer Verlag). doi: 10.1007/978-1-4471-2_3

Goldschmidt, G. (2014). Linkography: Unfolding the Design Process Cambridge, MA: MIT Press.

Grube, H. E., and Davis, S. N. (1988). “Inching our way up mount Olympus: The evolving-systems approach to creative thinking,” in The Nature of Creativity , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 243–270.

Guilford, J. P. (1950). Creativity. Am. Psychol. 5, 444–454. doi: 10.1037/h0063487

Guilford, J. P. (1956). The structure of intellect model. Psychol. Bull. 53, 267–293. doi: 10.1037/h0040755

Guilford, J. P. (1959). “Traits of creativity,” in Creativity and its Cultivation , ed. H. H. Anderson (New York: Harper), 142–161.

Guilford, J. P. (1967). The Nature of Human Intelligence New York, NY: McGraw-Hill, Inc.

Guilford, J. P., Christensen, P. R., Merrifield, P. R., and Wilson, R. C. (1978). Alternate Uses: Manual of Instructions and Interpretation Orange, CA: Sheridan Psychological Services.

Halpern, D. F. (2003). “Thinking critically about creative thinking,” in Critical Creative Processes , ed. M. A. Runco (Cresskill, NJ: Hampton Press), 189–208.

Hayes, J. R., and Flowers, L. S. (1986). Writing research and the writer. Am. Psychol. 41, 1106–1113. doi: 10.1037/0003-066X.41.10.1106

Jaarsveld, S. (2007). Creative Cognition: New Perspectives on Creative Thinking Kaiserslautern: University of Kaiserslautern Press.

Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., and Lachmann, T. (2015). Intelligence in creative processes; an EEG study. Intelligence 49, 171–178. doi: 10.1016/j.ijpsycho.2012.02.012

Jaarsveld, S., Lachmann, T., Hamel, R., and van Leeuwen, C. (2010). Solving and creating Raven Progressive Matrices: reasoning in well and ill defined problem spaces. Creat. Res. J. 22, 304–319. doi: 10.1080/10400419.2010.503541

Jaarsveld, S., Lachmann, T., and van Leeuwen, C. (2012). Creative reasoning across developmental levels: convergence and divergence in problem creation. Intelligence 40, 172–188. doi: 10.1016/j.intell.2012.01.002

Jaarsveld, S., Lachmann, T., and van Leeuwen, C. (2013). “The impact of problem space on reasoning: Solving versus creating matrices,” in Proceedings of the 35th Annual Conference of the Cognitive Science Society , eds M. Knauff, M. Pauen, N. Sebanz, and I. Wachsmuth (Austin, TX: Cognitive Science Society), 2632–2638.

Jaarsveld, S., and van Leeuwen, C. (2005). Sketches from a design process: creative cognition inferred from intermediate products. Cogn. Sci. 29, 79–101. doi: 10.1207/s15516709cog2901_4

Jauk, E., Benedek, M., Dunst, B., and Neubauer, A. C. (2013). The relationship between intelligence and creativity: new support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence 41, 212–221. doi: 10.1016/j.intell.2013.03.003

Jauk, E., Benedek, M., and Neubauer, A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84, 219–225. doi: 10.1016/j.ijpsycho.2012.02.012

Jaušovec, N. (1999). “Brain biology and brain functioning,” in Encyclopedia of Creativity , eds M. A. Runco and S. R. Pritzker (San Diego, CA: Academic Press), 203–212.

Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG Study. Intelligence 28, 213–237. doi: 10.1016/S0160-2896(00)00037-4

Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “here be dragons”. Front. Psychol 5:784. doi: 10.3389/fpsyg.2014.00784

Jung, R. E., and Haier, R. J. (2013). “Creativity and intelligence,” in Neuroscience of Creativity , eds O. Vartanian, A. S. Bristol, and J. C. Kaufman (Cambridge, MA: MIT Press), 233–254.

Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., et al. (2010). Neuroanatomy of creativity. Hum. Brain Mapp. 31, 398–409. doi: 10.1002/hbm.20874

Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science Cambridge, MA: MIT Press.

Kaufman, J. C. (2015). Why creativity isn’t in IQ tests, why it matters, and why it won’t change anytime soon probably. Intelligence 3, 59–72. doi: 10.3390/jintelligence303005

Kaufmann, G. (2003). What to measure? A new look at the concept of creativity. Scand. J. Educ. Res. 47, 235–251. doi: 10.1080/00313830308604

Kim, K. H. (2005). Can only intelligent people be creative? J. Second. Gift. Educ. 16, 57–66.

Koestler, A. (1964). The Act of Creation London: Penguin.

Kozbelt, A. (2008). Hierarchical linear modeling of creative artists’ problem solving behaviors. J. Creat. Behav. 42, 181–200. doi: 10.1002/j.2162-6057.2008.tb01294.x

Kulkarni, D., and Simon, H. A. (1988). The processes of scientific discovery: the strategy of experimentation. Cogn. Sci. 12, 139–175. doi: 10.1016/j.coph.2009.08.004

Limb, C. J. (2010). Your Brain on Improve Available at: http://www.ted.com/talks/charles_limb_your_brain_on_improv

Lubart, T. I. (2001). Models of the creative process: past, present and future. Creat. Res. J. 13, 295–308. doi: 10.1207/S15326934CRJ1334_07

Lubart, T. I. (2003). Psychologie de la Créativité. Cursus. Psychologie Paris: Armand Colin.

Martindale, C. (1999). “Biological basis of creativity,” in Handbook of Creativity , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 137–152.

Mednick, S. A. (1962). The associative basis of the creative process. Psychol. Rev. 69, 220–232. doi: 10.1037/h0048850

Mendelssohn, G. A. (1976). Associational and attentional processes in creative performance. J. Pers. 44, 341–369. doi: 10.1111/j.1467-6494.1976.tb00127.x

Mestre, J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Appl. Dev. Psychol. 23, 9–50. doi: 10.1016/S0193-3973(01)00101-0

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202. doi: 10.1146/annurev.neuro.24.1.167

Mumford, M. D., Hunter, S. T., Eubanks, D. L., Bedell, K. E., and Murphy, S. T. (2007). Developing leaders for creative efforts: a domain-based approach to leadership development. Hum. Res. Manag. Rev. 17, 402–417. doi: 10.1016/j.hrmr.2007.08.002

Newell, A., and Simon, H. A. (1972). “The theory of human problem solving,” in Human Problem Solving , eds A. Newell and H. Simon (Englewood Cliffs, NJ: Prentice Hall), 787–868.

Nusbaum, E. C., and Silvia, P. J. (2011). Are intelligence and creativity really so different? Intelligence 39, 36–40. doi: 10.1016/j.intell.2010.11.002

Palmiero, M., Nori, R., Aloisi, V., Ferrara, M., and Piccardi, L. (2015). Domain-specificity of creativity: a study on the relationship between visual creativity and visual mental imagery. Front. Psychol. 6:1870. doi: 10.3389/fpsyg.2015.01870

Piaget, J., Montangero, J., and Billeter, J. (1977). “La formation des correlats,” in Recherches sur L’abstraction Reflechissante I , ed. J. Piaget (Paris: Presse Universitaires de France), 115–129.

Plucker, J. (1999). Is the proof in the pudding? Reanalyses of torrance’s (1958 to present) longitudinal study data. Creat. Res. J. 12, 103–114. doi: 10.1207/s15326934crj1202_3

Raven, J. C. (1938/1998). Standard Progressive Matrices, Sets A, B, C, D & E Oxford: Oxford Psychologists Press.

Razumnikova, O. M., Volf, N. V., and Tarasova, I. V. (2009). Strategy and results: sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35, 285–294. doi: 10.1134/S0362119709030049

Runco, M. A. (1991). The evaluative, valuative, and divergent thinking of children. J. Creat. Behav. 25, 311–319. doi: 10.1177/1073858414568317

Runco, M. A. (2003). “Idea evaluation, divergent thinking, and creativity,” in Critical Creative Processes , ed. M. A. Runco (Cresskill, NJ: Hampton Press), 69–94.

Runco, M. A. (2007). Creativity, Theories and Themes: Research, Development, and Practice New York, NY: Elsevier.

Runco, M. A. (2008). Commentary: divergent thinking is not synonymous with creativity. Psychol. Aesthet. Creat. Arts 2, 93–96. doi: 10.1037/1931-3896.2.2.93

Sakar, P., and Chakrabarti, A. (2013). Support for protocol analyses in design research. Des. Issues 29, 70–81. doi: 10.1162/DESI_a_00231

Saraç, S., Önder, A., and Karakelle, S. (2014). The relations among general intelligence, metacognition and text learning performance. Educ. Sci. 39, 40–53.

Shye, S., and Goldzweig, G. (1999). Creativity as an extension of intelligence: Faceted definition and structural hypotheses. Megamot 40, 31–53.

Shye, S., and Yuhas, I. (2004). Creativity in problem solving. Tech. Rep. doi: 10.13140/2.1.1940.0643

Siegler, R. S. (1998). Children’s Thinking , 3rd Edn. Upper Saddle River, NJ: Prentice Hall, 28–50.

Siegler, R. S. (2005). Children’s learning. Am. Psychol. 60, 769–778. doi: 10.1037/0003-066X.60.8.769

Silvia, P. J. (2008). Creativity and intelligence revisited: a reanalysis of Wallach and Kogan (1965). Creat. Res. J. 20, 34–39. doi: 10.1080/10400410701841807

CrossRef Full Text

Silvia, P. J., Beaty, R. E., and Nussbaum, E. C. (2013). Verbal fluency and creativity: general and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence 41, 328–340. doi: 10.1016/j.intell.2013.05.004

Simon, H. A. (1973). The structure of ill structured problems. Artif. Intell. 4, 1012–1021. doi: 10.1016/0004-3702(73)90011-8

Simon, H. A., and Newell, A. (1971). Human problem solving: state of theory in 1970. Am. Psychol. 26, 145–159. doi: 10.1037/h0030806

Sligh, A. C., Conners, F. A., and Roskos-Ewoldsen, B. (2005). Relation of creativity to fluid and crystallized intelligence. J. Creat. Behav. 39, 123–136. doi: 10.1002/j.2162-6057.2005.tb01254.x

Spearman, C. (1904). ‘General intelligence,’ objectively determined and measured. Am. J. Psychol. 15, 201–293. doi: 10.2307/1412107

Spearman, C. (1927). The Abilities of Man London: Macmillan.

Sternberg, R. J. (1982). “Conceptions of intelligence,” in Handbook of Human Intelligence , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 3–28.

Sternberg, R. J. (2005). “The WICS model of giftedness,” in Conceptions of Giftedness , 2nd Edn, eds R. J. Sternberg and J. E. Davidson (New York, NY: Cambridge University Press), 237–243.

Sternberg, R. J., and Lubart, T. I. (1999). “The concept of creativity: Prospects and paradigms,” in Handbook of Creativity , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 3–15.

Sternberg, R. J., and Salter, W. (1982). “The nature of intelligence and its measurements,” in Handbook of Human Intelligence , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 3–24.

Thagard, P., and Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cogn. Sci. 22, l–24. doi: 10.1207/s15516709cog2201_1

Torrance, E. P. (1988). “The nature of creativity as manifest in its testing,” in The Nature of Creativity: Contemporary Psychological Perspectives , ed. R. J. Sternberg (New York, NY: Cambridge University Press), 43–75.

Urban, K. K., and Jellen, H. G. (1995). Test of Creative Thinking – Drawing Production Frankfurt: Swets Test Services.

van Leeuwen, C., Verstijnen, I. M., and Hekkert, P. (1999). “Common unconscious dynamics underlie uncommon conscious effect: a case study in the iterative nature of perception and creation,” in Modeling Consciousness Across the Disciplines , ed. J. S. Jordan (Lanham, MD: University Press of America), 179–218.

Vernon, P. E. (ed.). (1970). Creativity London: Penguin.

Verstijnen, I. M., Heylighen, A., Wagemans, J., and Neuckermans, H. (2001). “Sketching, analogies, and creativity,” in Visual and Spatial Reasoning in Design, II. Key Centre of Design Computing and Cognition , eds J. S. Gero, B. Tversky, and T. Purcell (Sydney, NSW: University of Sydney).

Wallas, G. (1926). The Art of Thought New York, NY: Harcourt, Brace & World.

Ward, T. B. (2007). Creative cognition as a window on creativity. Methods 42, 28–37. doi: 10.1016/j.ymeth.2006.12.002

Webb Young, J. (1939/2003). A Technique for Producing Ideas New York, NY: McGraw-Hill.

Welter, M. M., Jaarsveld, S., and Lachmann, T. (in press). Problem space matters: development of creativity and intelligence in primary school children. Creat. Res. J.

Welter, M. M., Jaarsveld, S., van Leeuwen, C., and Lachmann, T. (2016). Intelligence and creativity; over the threshold together? Creat. Res. J. 28, 212–218. doi: 10.1080/10400419.2016.1162564

Wertheimer, M. (1945/1968). Productive Thinking (Enlarged Edition) London: Tavistock.

Yamamoto, Y., Nakakoji, K., and Takada, S. (2000). Hand on representations in two dimensional spaces for early stages of design. Knowl. Based Syst. 13, 357–384. doi: 10.1016/S0950-7051(00)00078-2

Keywords : creative cognition, cognitive neuroscience, creative reasoning, problem space, knowledge domain

Citation: Jaarsveld S and Lachmann T (2017) Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research. Front. Psychol. 8:134. doi: 10.3389/fpsyg.2017.00134

Received: 05 July 2016; Accepted: 19 January 2017; Published: 06 February 2017.

Reviewed by:

Copyright © 2017 Jaarsveld and Lachmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Saskia Jaarsveld, [email protected] Thomas Lachmann, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Method Description Example
Trial and error Continue trying different solutions until problem is solved Restarting phone, turning off WiFi, turning off bluetooth in order to determine why your phone is malfunctioning
Algorithm Step-by-step problem-solving formula Instruction manual for installing new software on your computer
Heuristic General problem-solving framework Working backwards; breaking a task into steps

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

problem solving ability test in psychology

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

problem solving ability test in psychology

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Bias Description
Anchoring Tendency to focus on one particular piece of information when making decisions or problem-solving
Confirmation Focuses on information that confirms existing beliefs
Hindsight Belief that the event just experienced was predictable
Representative Unintentional stereotyping of someone or something
Availability Decision is based upon either an available precedent or an example that may be faulty

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size
  • Personality Psychology
  • Creativeness

Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research

Frontiers

  • RPTU - Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Thomas Lachmann at RPTU - Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Supplementary resource (1)

Marco Giancola

  • Maria Chiara Pino

Simonetta D'Amico

  • Kishan Sangani
  • Fuji Lestari

Jesi Alexander Alim

  • Mery Noviyanti

Hillol Biswas

  • INTELLIGENCE

Vera Eymann

  • S. William Ives
  • Jacob W. Getzels

Mihaly Csikszentmihalyi

  • J. P. Guilford
  • J P Guilford
  • Ronald A. Finke

Thomas B. Ward

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Creative Problem-Solving Test

Do you typically approach a problem from many perspectives or opt for the same old solution that worked in the past? In his work on human motivation, Robert E. Franken states that in order to be creative, you need to be able to view things from different perspectives.

Creativity is linked to fundamental qualities of thinking, such as flexibility and tolerance of ambiguity. This Creative Problem-solving Test was developed to evaluate whether your attitude towards problem-solving and the manner in which you approach a problem are conducive to creative thinking.

This test is made up of two types of questions: scenarios and self-assessment. For each scenario, answer according to how you would most likely behave in a similar situation. For the self-assessment questions, indicate the degree to which the given statements apply to you. In order to receive the most accurate results, please answer each question as honestly as possible.

After finishing this test you will receive a FREE snapshot report with a summary evaluation and graph. You will then have the option to purchase the full results for $6.95

This test is intended for informational and entertainment purposes only. It is not a substitute for professional diagnosis or for the treatment of any health condition. If you would like to seek the advice of a licensed mental health professional you can search Psychology Today's directory here .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Brain Development
  • Childhood & Adolescence
  • Diet & Lifestyle
  • Emotions, Stress & Anxiety
  • Learning & Memory
  • Thinking & Awareness
  • Alzheimer's & Dementia
  • Childhood Disorders
  • Immune System Disorders
  • Mental Health
  • Neurodegenerative Disorders
  • Infectious Disease
  • Neurological Disorders A-Z
  • Body Systems
  • Cells & Circuits
  • Genes & Molecules
  • The Arts & the Brain
  • Law, Economics & Ethics
  • Neuroscience in the News
  • Supporting Research
  • Tech & the Brain
  • Animals in Research
  • BRAIN Initiative
  • Meet the Researcher
  • Neuro-technologies
  • Tools & Techniques
  • Core Concepts
  • For Educators
  • Ask an Expert
  • The Brain Facts Book

BrainFacts.org

Test Your Problem-Solving Skills

Personalize your emails.

Personalize your monthly updates from BrainFacts.org by choosing the topics that you care about most!

Find a Neuroscientist

Engage local scientists to educate your community about the brain.

Image of the Week

Check out the Image of the Week Archive.

Facebook

SUPPORTING PARTNERS

Dana Foundation logo

  • Privacy Policy
  • Accessibility Policy
  • Terms and Conditions
  • Manage Cookies

Some pages on this website provide links that require Adobe Reader to view.

What is a Cognitive Test?

How difficult is the cognitive ability test, free practice cognitive reasoning test questions, frequently asked questions, cognitive ability test.

Updated July 16, 2024

Edward Melett

A cognitive test is an assessment tool designed to measure an individual's cognitive abilities, which are the mental processes involved in acquiring, processing, storing and using information.

Cognitive assessments are used to evaluate various aspects of cognitive functioning, including memory, attention, problem-solving, reasoning, language comprehension, and more.

Cognitive function tests are commonly employed in several contexts, including education, clinical psychology, neuropsychology and employment assessment.

This cognitive ability practice test has been designed to help you prepare for the real thing.  

Prepare for Any Job Assessment Test

The test consists of a set of 10 questions, along with correct answers and full explanations.

What are the Topics Covered in a Cognitive Functions Test?

Verbal reasoning.

A verbal reasoning test is a type of cognitive assessment designed to evaluate an individual's ability to understand and analyze written information, as well as to draw logical conclusions and make inferences based on that information.

These test reading comprehension, critical thinking,inference and deduction, vocabulary and language skills and textual analysis.

Numerical Reasoning

A numerical reasoning test is a type of cognitive assessment designed to evaluate an individual's ability to work with numerical information, perform mathematical operations and make logical deductions based on numerical data.

These test mathematical problem solving, data interpretation, critical thinking and numerical literacy.

Logical Reasoning

A logical reasoning test, also known as a logical aptitude test or logical thinking test, is a type of cognitive assessment designed to evaluate an individual's ability to think logically, critically analyze information and make deductions based on structured patterns and rules.

These test pattern recognition, critical thinking, deductive and inductive reasoning.

Figural Reasoning

A figural reasoning test, also known as a non-verbal reasoning test, is a type of cognitive assessment that evaluates an individual's ability to analyze and solve problems using visual or abstract patterns and shapes, rather than relying on language or numbers.

These test visual patterns and shapes, pattern recognition, spatial skills and critical thinking.

At the end of the test if you would like further practice, you can find more tests like this cognitive ability test at JobTestPrep .

PACK: WOLVES

Prepare for Any Job Assessment Test with TestHQ

How can I test my cognitive ability?

You can test your cognitive ability through various cognitive assessments and tests that are designed to measure different aspects of cognitive functioning. These tests can be administered by educational institutions, employers or qualified professionals.

To get an idea of your cognitive abilities, you can also explore online cognitive tests and brain training apps, although these may not provide as accurate or comprehensive results as professionally administered tests.

How to prepare for the cognitive ability assessment?

While cognitive ability assessments are designed to measure innate abilities and skills, there are some general strategies you can use to prepare:

  • Get enough rest and sleep before the assessment.
  • Practice with sample questions and familiarize yourself with the test format if possible.
  • Manage your stress and anxiety through relaxation techniques.
  • Follow any specific instructions or guidelines provided by the test administrator.
  • Be sure to arrive on time for the assessment and be well-rested and focused.

How long does a cognitive ability test take?

The duration of a cognitive ability test can vary widely depending on the specific test and its complexity. Some tests may take as little as 15-20 minutes, while others, especially comprehensive assessments, may take several hours. The length of the test is typically determined by the number and types of questions included.

How is a cognitive ability assessment scored?

Cognitive ability assessments are typically scored based on the number of correct answers. Some tests may also consider the time taken to complete each section or question, and in such cases, speed and accuracy are both important factors. Scores may be compared to a normative group to determine how an individual's performance compares to the average or to establish percentiles.

Is cognitive ability an IQ test?

Cognitive ability assessments are closely related to IQ tests, but they are not always the same. IQ (Intelligence Quotient) tests are a specific type of cognitive ability test that measures a range of cognitive skills, including problem-solving, logical reasoning and spatial intelligence.

However, there are other cognitive tests that may focus on specific cognitive domains, such as verbal reasoning, numerical reasoning, or figural reasoning.

IQ tests are a subset of cognitive ability assessments but are often used interchangeably with the term "cognitive ability test" in common language.

Job Test Prep

You might also be interested in these other PRT articles:

Cognitive Ability Tests: Practice Test Questions, Answers & Explanations

10 Best Problem-Solving Therapy Worksheets & Activities

Problem solving therapy

Cognitive science tells us that we regularly face not only well-defined problems but, importantly, many that are ill defined (Eysenck & Keane, 2015).

Sometimes, we find ourselves unable to overcome our daily problems or the inevitable (though hopefully infrequent) life traumas we face.

Problem-Solving Therapy aims to reduce the incidence and impact of mental health disorders and improve wellbeing by helping clients face life’s difficulties (Dobson, 2011).

This article introduces Problem-Solving Therapy and offers techniques, activities, and worksheets that mental health professionals can use with clients.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is problem-solving therapy, 14 steps for problem-solving therapy, 3 best interventions and techniques, 7 activities and worksheets for your session, fascinating books on the topic, resources from positivepsychology.com, a take-home message.

Problem-Solving Therapy assumes that mental disorders arise in response to ineffective or maladaptive coping. By adopting a more realistic and optimistic view of coping, individuals can understand the role of emotions and develop actions to reduce distress and maintain mental wellbeing (Nezu & Nezu, 2009).

“Problem-solving therapy (PST) is a psychosocial intervention, generally considered to be under a cognitive-behavioral umbrella” (Nezu, Nezu, & D’Zurilla, 2013, p. ix). It aims to encourage the client to cope better with day-to-day problems and traumatic events and reduce their impact on mental and physical wellbeing.

Clinical research, counseling, and health psychology have shown PST to be highly effective in clients of all ages, ranging from children to the elderly, across multiple clinical settings, including schizophrenia, stress, and anxiety disorders (Dobson, 2011).

Can it help with depression?

PST appears particularly helpful in treating clients with depression. A recent analysis of 30 studies found that PST was an effective treatment with a similar degree of success as other successful therapies targeting depression (Cuijpers, Wit, Kleiboer, Karyotaki, & Ebert, 2020).

Other studies confirm the value of PST and its effectiveness at treating depression in multiple age groups and its capacity to combine with other therapies, including drug treatments (Dobson, 2011).

The major concepts

Effective coping varies depending on the situation, and treatment typically focuses on improving the environment and reducing emotional distress (Dobson, 2011).

PST is based on two overlapping models:

Social problem-solving model

This model focuses on solving the problem “as it occurs in the natural social environment,” combined with a general coping strategy and a method of self-control (Dobson, 2011, p. 198).

The model includes three central concepts:

  • Social problem-solving
  • The problem
  • The solution

The model is a “self-directed cognitive-behavioral process by which an individual, couple, or group attempts to identify or discover effective solutions for specific problems encountered in everyday living” (Dobson, 2011, p. 199).

Relational problem-solving model

The theory of PST is underpinned by a relational problem-solving model, whereby stress is viewed in terms of the relationships between three factors:

  • Stressful life events
  • Emotional distress and wellbeing
  • Problem-solving coping

Therefore, when a significant adverse life event occurs, it may require “sweeping readjustments in a person’s life” (Dobson, 2011, p. 202).

problem solving ability test in psychology

  • Enhance positive problem orientation
  • Decrease negative orientation
  • Foster ability to apply rational problem-solving skills
  • Reduce the tendency to avoid problem-solving
  • Minimize the tendency to be careless and impulsive

D’Zurilla’s and Nezu’s model includes (modified from Dobson, 2011):

  • Initial structuring Establish a positive therapeutic relationship that encourages optimism and explains the PST approach.
  • Assessment Formally and informally assess areas of stress in the client’s life and their problem-solving strengths and weaknesses.
  • Obstacles to effective problem-solving Explore typically human challenges to problem-solving, such as multitasking and the negative impact of stress. Introduce tools that can help, such as making lists, visualization, and breaking complex problems down.
  • Problem orientation – fostering self-efficacy Introduce the importance of a positive problem orientation, adopting tools, such as visualization, to promote self-efficacy.
  • Problem orientation – recognizing problems Help clients recognize issues as they occur and use problem checklists to ‘normalize’ the experience.
  • Problem orientation – seeing problems as challenges Encourage clients to break free of harmful and restricted ways of thinking while learning how to argue from another point of view.
  • Problem orientation – use and control emotions Help clients understand the role of emotions in problem-solving, including using feelings to inform the process and managing disruptive emotions (such as cognitive reframing and relaxation exercises).
  • Problem orientation – stop and think Teach clients how to reduce impulsive and avoidance tendencies (visualizing a stop sign or traffic light).
  • Problem definition and formulation Encourage an understanding of the nature of problems and set realistic goals and objectives.
  • Generation of alternatives Work with clients to help them recognize the wide range of potential solutions to each problem (for example, brainstorming).
  • Decision-making Encourage better decision-making through an improved understanding of the consequences of decisions and the value and likelihood of different outcomes.
  • Solution implementation and verification Foster the client’s ability to carry out a solution plan, monitor its outcome, evaluate its effectiveness, and use self-reinforcement to increase the chance of success.
  • Guided practice Encourage the application of problem-solving skills across multiple domains and future stressful problems.
  • Rapid problem-solving Teach clients how to apply problem-solving questions and guidelines quickly in any given situation.

Success in PST depends on the effectiveness of its implementation; using the right approach is crucial (Dobson, 2011).

Problem-solving therapy – Baycrest

The following interventions and techniques are helpful when implementing more effective problem-solving approaches in client’s lives.

First, it is essential to consider if PST is the best approach for the client, based on the problems they present.

Is PPT appropriate?

It is vital to consider whether PST is appropriate for the client’s situation. Therapists new to the approach may require additional guidance (Nezu et al., 2013).

Therapists should consider the following questions before beginning PST with a client (modified from Nezu et al., 2013):

  • Has PST proven effective in the past for the problem? For example, research has shown success with depression, generalized anxiety, back pain, Alzheimer’s disease, cancer, and supporting caregivers (Nezu et al., 2013).
  • Is PST acceptable to the client?
  • Is the individual experiencing a significant mental or physical health problem?

All affirmative answers suggest that PST would be a helpful technique to apply in this instance.

Five problem-solving steps

The following five steps are valuable when working with clients to help them cope with and manage their environment (modified from Dobson, 2011).

Ask the client to consider the following points (forming the acronym ADAPT) when confronted by a problem:

  • Attitude Aim to adopt a positive, optimistic attitude to the problem and problem-solving process.
  • Define Obtain all required facts and details of potential obstacles to define the problem.
  • Alternatives Identify various alternative solutions and actions to overcome the obstacle and achieve the problem-solving goal.
  • Predict Predict each alternative’s positive and negative outcomes and choose the one most likely to achieve the goal and maximize the benefits.
  • Try out Once selected, try out the solution and monitor its effectiveness while engaging in self-reinforcement.

If the client is not satisfied with their solution, they can return to step ‘A’ and find a more appropriate solution.

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

Positive self-statements

When dealing with clients facing negative self-beliefs, it can be helpful for them to use positive self-statements.

Use the following (or add new) self-statements to replace harmful, negative thinking (modified from Dobson, 2011):

  • I can solve this problem; I’ve tackled similar ones before.
  • I can cope with this.
  • I just need to take a breath and relax.
  • Once I start, it will be easier.
  • It’s okay to look out for myself.
  • I can get help if needed.
  • Other people feel the same way I do.
  • I’ll take one piece of the problem at a time.
  • I can keep my fears in check.
  • I don’t need to please everyone.

problem solving ability test in psychology

World’s Largest Positive Psychology Resource

The Positive Psychology Toolkit© is a groundbreaking practitioner resource containing over 500 science-based exercises , activities, interventions, questionnaires, and assessments created by experts using the latest positive psychology research.

Updated monthly. 100% Science-based.

“The best positive psychology resource out there!” — Emiliya Zhivotovskaya , Flourishing Center CEO

PST practitioners have many different techniques available to support clients as they learn to tackle day-to-day or one-off trauma.

5 Worksheets and workbooks

Problem-solving self-monitoring form.

Worksheets for problem solving therapy

Ask the client to complete the following:

  • Describe the problem you are facing.
  • What is your goal?
  • What have you tried so far to solve the problem?
  • What was the outcome?

Reactions to Stress

It can be helpful for the client to recognize their own experiences of stress. Do they react angrily, withdraw, or give up (Dobson, 2011)?

The Reactions to Stress worksheet can be given to the client as homework to capture stressful events and their reactions. By recording how they felt, behaved, and thought, they can recognize repeating patterns.

What Are Your Unique Triggers?

Helping clients capture triggers for their stressful reactions can encourage emotional regulation.

When clients can identify triggers that may lead to a negative response, they can stop the experience or slow down their emotional reaction (Dobson, 2011).

The What Are Your Unique Triggers ? worksheet helps the client identify their triggers (e.g., conflict, relationships, physical environment, etc.).

Problem-Solving worksheet

Imagining an existing or potential problem and working through how to resolve it can be a powerful exercise for the client.

Use the Problem-Solving worksheet to state a problem and goal and consider the obstacles in the way. Then explore options for achieving the goal, along with their pros and cons, to assess the best action plan.

Getting the Facts

Clients can become better equipped to tackle problems and choose the right course of action by recognizing facts versus assumptions and gathering all the necessary information (Dobson, 2011).

Use the Getting the Facts worksheet to answer the following questions clearly and unambiguously:

  • Who is involved?
  • What did or did not happen, and how did it bother you?
  • Where did it happen?
  • When did it happen?
  • Why did it happen?
  • How did you respond?

2 Helpful Group Activities

While therapists can use the worksheets above in group situations, the following two interventions work particularly well with more than one person.

Generating Alternative Solutions and Better Decision-Making

A group setting can provide an ideal opportunity to share a problem and identify potential solutions arising from multiple perspectives.

Use the Generating Alternative Solutions and Better Decision-Making worksheet and ask the client to explain the situation or problem to the group and the obstacles in the way.

Once the approaches are captured and reviewed, the individual can share their decision-making process with the group if they want further feedback.

Visualization

Visualization can be performed with individuals or in a group setting to help clients solve problems in multiple ways, including (Dobson, 2011):

  • Clarifying the problem by looking at it from multiple perspectives
  • Rehearsing a solution in the mind to improve and get more practice
  • Visualizing a ‘safe place’ for relaxation, slowing down, and stress management

Guided imagery is particularly valuable for encouraging the group to take a ‘mental vacation’ and let go of stress.

Ask the group to begin with slow, deep breathing that fills the entire diaphragm. Then ask them to visualize a favorite scene (real or imagined) that makes them feel relaxed, perhaps beside a gently flowing river, a summer meadow, or at the beach.

The more the senses are engaged, the more real the experience. Ask the group to think about what they can hear, see, touch, smell, and even taste.

Encourage them to experience the situation as fully as possible, immersing themselves and enjoying their place of safety.

Such feelings of relaxation may be able to help clients fall asleep, relieve stress, and become more ready to solve problems.

We have included three of our favorite books on the subject of Problem-Solving Therapy below.

1. Problem-Solving Therapy: A Treatment Manual – Arthur Nezu, Christine Maguth Nezu, and Thomas D’Zurilla

Problem-Solving Therapy

This is an incredibly valuable book for anyone wishing to understand the principles and practice behind PST.

Written by the co-developers of PST, the manual provides powerful toolkits to overcome cognitive overload, emotional dysregulation, and the barriers to practical problem-solving.

Find the book on Amazon .

2. Emotion-Centered Problem-Solving Therapy: Treatment Guidelines – Arthur Nezu and Christine Maguth Nezu

Emotion-Centered Problem-Solving Therapy

Another, more recent, book from the creators of PST, this text includes important advances in neuroscience underpinning the role of emotion in behavioral treatment.

Along with clinical examples, the book also includes crucial toolkits that form part of a stepped model for the application of PST.

3. Handbook of Cognitive-Behavioral Therapies – Keith Dobson and David Dozois

Handbook of Cognitive-Behavioral Therapies

This is the fourth edition of a hugely popular guide to Cognitive-Behavioral Therapies and includes a valuable and insightful section on Problem-Solving Therapy.

This is an important book for students and more experienced therapists wishing to form a high-level and in-depth understanding of the tools and techniques available to Cognitive-Behavioral Therapists.

For even more tools to help strengthen your clients’ problem-solving skills, check out the following free worksheets from our blog.

  • Case Formulation Worksheet This worksheet presents a four-step framework to help therapists and their clients come to a shared understanding of the client’s presenting problem.
  • Understanding Your Default Problem-Solving Approach This worksheet poses a series of questions helping clients reflect on their typical cognitive, emotional, and behavioral responses to problems.
  • Social Problem Solving: Step by Step This worksheet presents a streamlined template to help clients define a problem, generate possible courses of action, and evaluate the effectiveness of an implemented solution.

If you’re looking for more science-based ways to help others enhance their wellbeing, check out this signature collection of 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

problem solving ability test in psychology

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

While we are born problem-solvers, facing an incredibly diverse set of challenges daily, we sometimes need support.

Problem-Solving Therapy aims to reduce stress and associated mental health disorders and improve wellbeing by improving our ability to cope. PST is valuable in diverse clinical settings, ranging from depression to schizophrenia, with research suggesting it as a highly effective treatment for teaching coping strategies and reducing emotional distress.

Many PST techniques are available to help improve clients’ positive outlook on obstacles while reducing avoidance of problem situations and the tendency to be careless and impulsive.

The PST model typically assesses the client’s strengths, weaknesses, and coping strategies when facing problems before encouraging a healthy experience of and relationship with problem-solving.

Why not use this article to explore the theory behind PST and try out some of our powerful tools and interventions with your clients to help them with their decision-making, coping, and problem-solving?

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Cuijpers, P., Wit, L., Kleiboer, A., Karyotaki, E., & Ebert, D. (2020). Problem-solving therapy for adult depression: An updated meta-analysis. European P sychiatry ,  48 (1), 27–37.
  • Dobson, K. S. (2011). Handbook of cognitive-behavioral therapies (3rd ed.). Guilford Press.
  • Dobson, K. S., & Dozois, D. J. A. (2021). Handbook of cognitive-behavioral therapies  (4th ed.). Guilford Press.
  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook . Psychology Press.
  • Nezu, A. M., & Nezu, C. M. (2009). Problem-solving therapy DVD . Retrieved September 13, 2021, from https://www.apa.org/pubs/videos/4310852
  • Nezu, A. M., & Nezu, C. M. (2018). Emotion-centered problem-solving therapy: Treatment guidelines. Springer.
  • Nezu, A. M., Nezu, C. M., & D’Zurilla, T. J. (2013). Problem-solving therapy: A treatment manual . Springer.

' src=

Share this article:

Article feedback

What our readers think.

Saranya

Thanks for your information given, it was helpful for me something new I learned

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Variations of the empty chair

The Empty Chair Technique: How It Can Help Your Clients

Resolving ‘unfinished business’ is often an essential part of counseling. If left unresolved, it can contribute to depression, anxiety, and mental ill-health while damaging existing [...]

problem solving ability test in psychology

29 Best Group Therapy Activities for Supporting Adults

As humans, we are social creatures with personal histories based on the various groups that make up our lives. Childhood begins with a family of [...]

Free Therapy Resources

47 Free Therapy Resources to Help Kick-Start Your New Practice

Setting up a private practice in psychotherapy brings several challenges, including a considerable investment of time and money. You can reduce risks early on by [...]

Read other articles by their category

  • Body & Brain (55)
  • Coaching & Application (59)
  • Compassion (26)
  • Counseling (51)
  • Emotional Intelligence (24)
  • Gratitude (18)
  • Grief & Bereavement (21)
  • Happiness & SWB (40)
  • Meaning & Values (27)
  • Meditation (21)
  • Mindfulness (44)
  • Motivation & Goals (46)
  • Optimism & Mindset (35)
  • Positive CBT (31)
  • Positive Communication (23)
  • Positive Education (49)
  • Positive Emotions (32)
  • Positive Leadership (20)
  • Positive Parenting (16)
  • Positive Psychology (34)
  • Positive Workplace (37)
  • Productivity (18)
  • Relationships (46)
  • Resilience & Coping (40)
  • Self Awareness (22)
  • Self Esteem (38)
  • Strengths & Virtues (33)
  • Stress & Burnout Prevention (38)
  • Theory & Books (46)
  • Therapy Exercises (37)
  • Types of Therapy (65)

What Is Intelligence In Psychology

Charlotte Ruhl

Research Assistant & Psychology Graduate

BA (Hons) Psychology, Harvard University

Charlotte Ruhl, a psychology graduate from Harvard College, boasts over six years of research experience in clinical and social psychology. During her tenure at Harvard, she contributed to the Decision Science Lab, administering numerous studies in behavioral economics and social psychology.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Intelligence in psychology refers to the mental capacity to learn from experiences, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s environment. It includes skills such as problem-solving, critical thinking, learning quickly, and understanding complex ideas.

Key Takeaways

  • Defining and classifying intelligence is extremely complicated. Theories of intelligence range from having one general intelligence (g) to certain primary mental abilities and multiple category-specific intelligences.
  • Following the creation of the Binet-Simon scale in the early 1900s, intelligence tests, now referred to as intelligence quotient (IQ) tests, are the most widely-known and used measure for determining an individual’s intelligence.
  • Although these tests are generally reliable and valid tools, they have flaws as they lack cultural specificity and can evoke stereotype threats and self-fulfilling prophecies.
  • IQ scores are normally distributed , meaning that 95% of the population has IQ scores between 70 and 130. However, some extreme examples exist of people with scores far exceeding 130 or far below 70.

Academic training with education and knowledge learning tiny person concept. School, college or university class course for cognitive process and smart professional skills program vector illustration

What Is Intelligence?

It might seem useless to define such a simple word. After all, we have all heard this word hundreds of times and probably have a general understanding of its meaning.

However, the concept of intelligence has been a widely debated topic among members of the psychology community for decades.

Intelligence has been defined in many ways: higher level abilities (such as abstract reasoning, mental representation, problem solving, and decision making), the ability to learn, emotional knowledge, creativity, and adaptation to meet the demands of the environment effectively.

Psychologist Robert Sternberg defined intelligence as “the mental abilities necessary for adaptation to, as well as shaping and selection of, any environmental context (1997, p. 1).

History of Intelligence

The study of human intelligence dates back to the late 1800s when Sir Francis Galton (the cousin of Charles Darwin) became one of the first to study intelligence.

Galton was interested in the concept of a gifted individual, so he created a lab to measure reaction times and other physical characteristics to test his hypothesis that intelligence is a general mental ability producing biological evolution (hello, Darwin!).

Galton theorized that because quickness and other physical attributes were evolutionarily advantageous, they would also provide a good indication of general mental ability (Jensen, 1982).

Thus, Galton operationalized intelligence as reaction time.

Operationalization is an important process in research that involves defining an unmeasurable phenomenon (such as intelligence) in measurable terms (such as reaction time), allowing the concept to be studied empirically (Crowthre-Heyck, 2005).

Galton’s study of intelligence in the laboratory setting and his theorization of the heritability of intelligence paved the way for decades of future research and debate in this field.

Theories of Intelligence

Some researchers argue that intelligence is a general ability, whereas others make the assertion that intelligence comprises specific skills and talents. Psychologists contend that intelligence is genetic, or inherited, and others claim that it is largely influenced by the surrounding environment.

As a result, psychologists have developed several contrasting theories of intelligence as well as individual tests that attempt to measure this very concept.

Spearman’s General Intelligence (g)

General intelligence, also known as g factor, refers to a general mental ability that, according to Spearman, underlies multiple specific skills, including verbal, spatial, numerical, and mechanical.

Charles Spearman, an English psychologist, established the two-factor theory of intelligence back in 1904 (Spearman, 1904). To arrive at this theory, Spearman used a technique known as factor analysis.

Factor analysis is a procedure through which the correlation of related variables is evaluated to find an underlying factor that explains this correlation.

In the case of intelligence, Spearman noticed that those who did well in one area of intelligence tests (for example, mathematics) also did well in other areas (such as distinguishing pitch; Kalat, 2014).

In other words, there was a strong correlation between performing well in math and music, and Spearman then attributed this relationship to a central factor, that of general intelligence (g).

Spearman concluded that there is a single g-factor that represents an individual’s general intelligence across multiple abilities and that a second factor, s, refers to an individual’s specific ability in one particular area (Spearman, as cited in Thomson, 1947).

General Intelligence and Specific Abilities

Together, these two main factors compose Spearman’s two-factor theory.

Thurstone’s Primary Mental Abilities

Thurstone (1938) challenged the concept of a g-factor. After analyzing data from 56 different tests of mental abilities, he identified a number of primary mental abilities that comprise intelligence as opposed to one general factor.

The seven primary mental abilities in Thurstone’s model are verbal comprehension, verbal fluency, number facility, spatial visualization, perceptual speed, memory, and inductive reasoning (Thurstone, as cited in Sternberg, 2003).

Description
Word Fluency Ability to use words quickly and fluency in performing such tasks as rhyming, solving anagrams, and doing crossword puzzles.
Verbal Comprehension Ability to understand the meaning of words, concepts, and ideas.
Numerical Ability Ability to use numbers to quickly compute answers to problems.
Spatial Visualization Ability to visualize and manipulate patterns and forms in space.
Perceptual Speed Ability to grasp perceptual details quickly and accurately and to determine similarities and differences between stimuli.
Memory Ability to recall information such as lists or words, mathematical formulas, and definitions.
Inductive Reasoning Ability to derive general rules and principles from the presented information.

Although Thurstone did not reject Spearman’s idea of general intelligence altogether, he instead theorized that intelligence consists of both general ability and a number of specific abilities, paving the way for future research that examined the different forms of intelligence.

Gardner’s Multiple Intelligences

Following the work of Thurstone, American psychologist Howard Gardner built off the idea that there are multiple forms of intelligence.

He proposed that there is no single intelligence, but rather distinct, independent multiple intelligences exist, each representing unique skills and talents relevant to a certain category.

Gardner (1983, 1987) initially proposed seven multiple intelligences : linguistic, logical-mathematical, spatial, musical, bodily-kinesthetic, interpersonal, and intrapersonal, and he has since added naturalist intelligence.

Multiple Intelligences

Gardner holds that most activities (such as dancing) will involve a combination of these multiple intelligences (such as spatial and bodily-kinesthetic intelligences). He also suggests that these multiple intelligences can help us understand concepts beyond intelligence, such as creativity and leadership .

And although this theory has widely captured the attention of the psychology community and the greater public, it does have its faults.

There have been few empirical studies that actually test this theory, and this theory does not account for other types of intelligence beyond the ones Gardner lists (Sternberg, 2003).

Triarchic Theory of Intelligence

Just two years later, in 1985, Robert Sternberg proposed a three-category theory of intelligence, integrating components that were lacking in Gardner’s theory. This theory is based on the definition of intelligence as the ability to achieve success based on your personal standards and your sociocultural context.

According to the triarchic theory, intelligence has three aspects: analytical, creative, and practical (Sternberg, 1985).

Analytical intelligence , also referred to as componential intelligence, refers to intelligence that is applied to analyze or evaluate problems and arrive at solutions. This is what a traditional IQ test measures.

Creative intelligence is the ability to go beyond what is given to create novel and interesting ideas. This type of intelligence involves imagination, innovation, and problem-solving.

Practical intelligence is the ability that individuals use to solve problems faced in daily life when a person finds the best fit between themselves and the demands of the environment.

Adapting to the demands of the environment involves either utilizing knowledge gained from experience to purposefully change oneself to suit the environment (adaptation), changing the environment to suit oneself (shaping), or finding a new environment in which to work (selection).

Other Types of Intelligence

After examining the popular competing theories of intelligence, it becomes clear that there are many different forms of this seemingly simple concept.

On the one hand, Spearman claims that intelligence is generalizable across many different areas of life, and on the other hand, psychologists such as Thurstone, Gardener, and Sternberg hold that intelligence is like a tree with many different branches, each representing a specific form of intelligence.

To make matters even more interesting, let’s throw a few more types of intelligence into the mix!

Emotional Intelligence

Emotional Intelligence is the “ability to monitor one’s own and other people’s emotions, to discriminate between different emotions and label them appropriately, and to use emotional information to guide thinking and behavior” (Salovey and Mayer, 1990).

Emotional intelligence is important in our everyday lives, seeing as we experience one emotion or another nearly every second of our lives. You may not associate emotions and intelligence with one another, but in reality, they are very related.

Emotional intelligence refers to the ability to recognize the meanings of emotions and to reason and problem-solve on the basis of them (Mayer, Caruso, & Salovey, 1999). The four key components of emotional Intelligence are (i) self-awareness, (ii) self-management, (iii) social awareness, and (iv) relationship management.

Emotional and Social Intelligence Leadership Competencies

In other words, if you are high in emotional intelligence, you can accurately perceive emotions in yourself and others (such as reading facial expressions), use emotions to help facilitate thinking, understand the meaning behind your emotions (why are you feeling this way?), and know how to manage your emotions (Salovey & Mayer, 1990).

Fluid vs. Crystallized Intelligence

Raymond Cattell (1963) first proposed the concepts of fluid and crystallized intelligence and further developed the theory with John Horn.

Fluid intelligence is the ability to problem solve in novel situations without referencing prior knowledge, but rather through the use of logic and abstract thinking. Fluid intelligence can be applied to any novel problem because no specific prior knowledge is required (Cattell, 1963). As you grow older fluid increases and then starts to decrease in the late 20s.
Crystallized intelligence refers to the use of previously-acquired knowledge, such as specific facts learned in school or specific motor skills or muscle memory (Cattell, 1963). As you grow older and accumulate knowledge, crystallized intelligence increases.

graph showing fluid and crystalized intelligence across the lifespan

The Cattell-Horn (1966) theory of fluid and crystallized intelligence suggests that intelligence is composed of a number of different abilities that interact and work together to produce overall individual intelligence.

For example, if you are taking a hard math test, you rely on your crystallized intelligence to process the numbers and meaning of the questions, but you may use fluid intelligence to work through the novel problem and arrive at the correct solution. It is also possible that fluid intelligence can become crystallized intelligence.

The novel solutions you create when relying on fluid intelligence can, over time, develop into crystallized intelligence after they are incorporated into long-term memory.

This illustrates some of the ways in which different forms of intelligence overlap and interact with one another, revealing its dynamic nature.

Intelligence Testing

Binet-simon scale.

During the early 1900s, the French government enlisted the help of psychologist Alfred Binet to understand which children were going to be slower learners and thus required more assistance in the classroom (Binet et al., 1912).

As a result, he and his colleague, Theodore Simon, began to develop a specific set of questions that focused on areas such as memory and problem-solving skills.

Binet-Simon Scale Item

They tested these questions on groups of students aged three to twelve to help standardize the measure (Binet et al., 1912). Binet realized that some children were able to answer advanced questions that their older peers were able to answer.

As a result, he created the concept of mental age, or how well an individual performs intellectually relative to the average performance at that age (Cherry, 2020).

Ultimately, Binet finalized the scale, known as the Binet-Simon scale, that became the basis for the intelligence tests still used today.

The Binet-Simon scale of 1905 comprised 30 items designed to measure judgment, comprehension, and reasoning, which Binet deemed the key characteristics of intelligence.

Stanford-Binet Intelligence Scale

When the Binet-Simon scale made its way over to the United States, Stanford psychologist Lewis Terman adapted the test for American students and published the Stanford-Binet Intelligence Scale in 1916 (Cherry, 2020).

The Stanford-Binet Scale is a contemporary assessment that measures intelligence according to five features of cognitive ability,

including fluid reasoning, knowledge, quantitative reasoning, visual-spatial processing, and working memory. Both verbal and nonverbal responses are measured.

IQ normal distribution bell curve

This test used a single number, referred to as the intelligence quotient (IQ), to indicate an individual’s score.

The average score for the test is 100, and any score from 90 to 109 is considered to be in the average intelligence range. Scores from 110 to 119 are considered to be High Average. Superior scores range from 120 to 129 and anything over 130 is considered Very Superior.

To calculate IQ, the student’s mental age is divided by his or her actual (or chronological) age, and this result is multiplied by 100. If your mental age is equal to your chronological age, you will have an IQ of 100, or average. If your mental age is 12, but your chronological age is only 10, you will have an above-average IQ of 120.

WISC and WAIS

Just as theories of intelligence build off one another, intelligence tests do too. After Terman created Stanford-Binet test, American psychologist David Wechsler developed a new tool due to his dissatisfaction with the limitations of the Stanford-Binet test (Cherry, 2020).

Like Thurstone, Gardner, and Sternberg, Wechsler believed intelligence involved many different mental abilities and felt that the Stanford-Binet scale too closely reflected the idea of one general intelligence.

Because of this, Wechsler created the Wechsler Intelligence Scale for Children (WISC) and the Wechsler Adult Intelligence Scale (WAIS) in 1955, with the most up-to-date version being the WAIS-IV (Cherry, 2020).

The Wechsler Intelligence Scale for Children (WISC), developed by David Wechsler, is an IQ test designed to measure intelligence and cognitive ability in children between the ages of 6 and 16. It is currently in its fourth edition (WISC-V) released in 2014 by Pearson.

problem solving ability test in psychology

Above Image: WISC-IV Sample Test Question

The Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed to measure cognitive ability in adults and older adolescents, including

verbal comprehension, perceptual reasoning, working memory, and processing speed.

The latest version of the Wechsler Adult Intelligence Scale (WAIS-IV) was standardized on 2,200 healthy people between the ages of 16 and 90 years (Brooks et al., 2011).

The standardization of a test involves giving it to a large number of people of different ages to compute the average score on the test at each age level.

The overall IQ score combines the test takers’ performance in all four categories (Cherry, 2020). And rather than calculating this number based on mental and chronological age, the WAIS compares the individual’s score to the average score at that level, as calculated by the standardization process.

The Flynn Effect

It is important to regularly standardize an intelligence test because the overall level of intelligence in a population may change over time.

This phenomenon is known as the Flynn effect (named after its discoverer, New Zealand researcher James Flynn) which refers to the observation that scores on intelligence tests worldwide increase from decade to decade (Flynn, 1984).

Aptitude vs. Achievement Tests

Other tests, such as aptitude and achievement tests, are designed to measure intellectual capability. Achievement tests measure what content a student has already learned (such as a unit test in history or a final math exam), whereas an aptitude test measures a student’s potential or ability to learn (Anastasi, 1984).

Although this may sound similar to an IQ test, aptitude tests typically measure abilities in very specific areas.

Criticism of Intelligence Testing

Criticisms have ranged from the claim that IQ tests are biased in favor of white, middle-class people. Negative stereotypes about a person’s ethnicity, gender, or age may cause the person to suffer stereotype threat, a burden of doubt about his or her own abilities, which can create anxiety that result in lower scores.

Reliability and Construct Validity

Although you may be wondering if you take an intelligence test multiple times will you improve your score and whether these tests even measure intelligence in the first place, research provides reassurance that these tests are both very reliable and have high construct validity.

Reliability simply means that they are consistent over time. In other words, if you take a test at two different points in time, there will be very little change in performance or, in the case of intelligence tests, IQ scores.

Although this isn’t a perfect science, and your score might slightly fluctuate when taking the same test on different occasions or different tests at the same age, IQ tests demonstrate relatively high reliability (Tuma & Appelbaum, 1980).

Additionally, intelligence tests also reveal strong construct validity , meaning that they are, in fact, measuring intelligence rather than something else.

Researchers have spent hours on end developing, standardizing, and adapting these tests to best fit the current times. But that is also not to say that these tests are completely flawless.

Research documents errors with the specific scoring of tests and interpretation of the multiple scores (since typically, an individual will receive an overall IQ score accompanied by several category-specific scores), and some studies question the actual validity, reliability, and utility for individual clinical use of these tests (Canivez, 2013).

Additionally, intelligence scores are created to reflect different theories of intelligence, so the interpretations may be heavily based on the theory upon which the test is based (Canivez, 2013).

Cultural Specificity

There are issues with intelligence tests beyond looking at them in a vacuum.  These tests were created by Western psychologists who created such tools to measure euro-centric values.

However, it is important to recognize that the majority of the world’s population does not reside in Europe or North America, and as a result, the cultural specificity of these tests is crucial.

Different cultures hold different values and even have different perceptions of intelligence, so is it fair to have one universal marker of this increasingly complex concept?

For example, a 1992 study found that Kenyan parents defined intelligence as the ability to do without being told what needed to be done around the homestead (Harkness et al., 1992), and, given the American and European emphasis on speed, some Ugandans define intelligent people as being slow in thought and action (Wober, 1974).

Together, these examples illustrate the flexibility of defining intelligence, making capturing this concept in a single test, let alone a single number even more challenging.  And even within the U.S., do perceptions of intelligence differ?

An example is in San Jose, California, where Latino, Asian, and Anglo parents had varying definitions of intelligence.  The teachers’ understanding of intelligence was more similar to that of the Asian and Anglo communities, and this similarity predicted the child’s performance in school (Okagaki & Sternberg, 1993).

That is, students whose families had more similar understandings of intelligence were doing better in the classroom.

Intelligence takes many forms, ranging from country to country and culture to culture.  Although IQ tests might have high reliability and validity, understanding the role of culture is as, if not more, important in forming the bigger picture of an individual’s intelligence.

IQ tests may accurately measure academic intelligence, but more research must be done to discern whether they truly measure practical intelligence or even just general intelligence in all cultures.

Social and Environmental Factors

Another important part of the puzzle to consider is the social and environmental context in which an individual lives and the IQ test-related biases that develop as a result.

These might help explain why some individuals have lower scores than others. For example, the threat of social exclusion can greatly decrease the expression of intelligence.

A 2002 study gave participants an IQ test and a personality inventory, and some were randomly chosen to receive feedback from the inventory indicating that they were “the sort of people who would end up alone in life” (Baumeister et al., 2002).

After a second test, those who were told they would be loveless and friendless in the future answered significantly fewer questions than they did on the earlier test.

These findings can translate into the real world where not only the threat of social exclusion can decrease the expression of intelligence but also a perceived threat to physical safety.

In other words, a child’s poor academic performance can be attributed to the disadvantaged, potentially unsafe communities in which they grow up.

Stereotype Threat

Stereotype threat is a phenomenon in which people feel at risk of conforming to stereotypes about their social group. Negative stereotypes can also create anxiety that results in lower scores.

In one study, Black and White college students were given part of the verbal section from the Graduate Record Exam (GRE), but in the stereotype threat condition, they told students the test diagnosed intellectual ability, thus potentially making the stereotype that Blacks are less intelligent than Whites salient.

The results of this study revealed that in the stereotype threat condition, Blacks performed worse than Whites, but in the no stereotype threat condition, Blacks and Whites performed equally well (Steele & Aronson, 1995).

And even just recording your race can also result in worsened performance. Stereotype threat is a real threat and can be detrimental to an individual’s performance on these tests.

Self-Fulfilling Prophecy

Stereotype threat is closely related to the concept of a self-fulfilling prophecy in which an individual’s expectations about another person can result in the other person acting in ways that conform to that very expectation.

In one experiment, students in a California elementary school were given an IQ test, after which their teachers were given the names of students who would become “intellectual bloomers” that year based on the results of the test (Rosenthal & Jacobson, 1968).

At the end of the study, the students were tested again with the same IQ test, and those labeled as “intellectual bloomers” significantly increased their scores.

This illustrates that teachers may subconsciously behave in ways that encourage the success of certain students, thus influencing their achievement (Rosenthal & Jacobson, 1968), and provides another example of small variables that can play a role in an individual’s intelligence score and the development of their intelligence.

This is all to say that it is important to consider the less visible factors that play a role in determining someone’s intelligence. While an IQ score has many benefits in measuring intelligence, it is critical to consider that just because someone has a lower score does not necessarily mean they are lower in intelligence.

There are many factors that can worsen performance on these tests, and the tests themselves might not even be accurately measuring the very concept they are intended to.

Extremes of Intelligence

IQ scores are generally normally distributed (Moore et al., 2013). That is, roughly 95% of the population has IQ scores between 70 and 130. But what about the other 5%?

Individuals who fall outside this range represent the extremes of intelligence.

Those who have an IQ above 130 are considered to be gifted (Lally & French, 2018), such as Christopher Langan, an American horse rancher, who has an IQ score around 200 (Gladwell, 2008).

Those individuals who have scores below 70 do so because of an intellectual disability marked by substantial developmental delays, including motor, cognitive, and speech delays (De Light, 2012).

Some of the time, these disabilities are the product of genetic mutations.

Down syndrome, for example, resulting from extra genetic material from or a complete extra copy of the 21st chromosome, is a common genetic cause of an intellectual disability (Breslin, 2014). As such, many individuals with Down Syndrome have below-average IQ scores (Breslin, 2014).

Savant syndrome is another example of extreme intelligence. Despite having significant mental disabilities, these individuals demonstrate certain abilities in some fields that are far above average, such as incredible memorization, rapid mathematical or calendar calculation ability, or advanced musical talent (Treffert, 2009).

The fact that these individuals who may be lacking in certain areas such as social interaction and communication make up for it in other remarkable areas further illustrates the complexity of intelligence and what this concept means today, as well as how we must consider all individuals when determining how to perceive, measure, and recognize intelligence in our society.

Intelligence Today

Today, intelligence is generally understood as the ability to understand and adapt to the environment by using inherited abilities and learned knowledge.

Many new intelligence tests have arisen, such as the University of California Matrix Reasoning Task (Pahor et al., 2019), that can be taken online and in very little time, and new methods of scoring these tests have been developed too (Sansone et al., 2014).

Admission into university and graduate schools relies on specific aptitude and achievement tests, such as the SAT, ACT, and the LSAT – these tests have become a huge part of our lives.

Humans are incredibly intelligent beings and rely on our intellectual abilities daily. Although intelligence can be defined and measured in countless ways, our overall intelligence as a species makes us incredibly unique and has allowed us to thrive for generations on end.

Anastasi, A. (1984). 7. Aptitude and Achievement Tests: The Curious Case of the Indestructible Strawperson.

Baumeister, R. F., Twenge, J. M., & Nuss, C. K. (2002). Effects of social exclusion on cognitive processes: anticipated aloneness reduces intelligent thought . Journal of personality and social psychology, 83 (4), 817.

Binet, A., Simon, T., & Simon, T. (1912). A method of measuring the development of the intelligence of young children . Chicago medical book Company.

Breslin, J., Spanò, G., Bootzin, R., Anand, P., Nadel, L., & Edgin, J. (2014). Obstructive sleep apnea syndrome and cognition in Down syndrome . Developmental Medicine & Child Neurology, 56 (7), 657-664.

Brooks, B. L., Holdnack, J. A., & Iverson, G. L. (2011). Advanced clinical interpretation of the WAIS-IV and WMS-IV: Prevalence of low scores varies by level of intelligence and years of education . Assessment, 18 (2), 156-167.

Canivez, G. L. (2013). Psychometric versus actuarial interpretation of intelligence and related aptitude batteries.

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of educational psychology, 54 (1), 1.

Cherry, K. (2020). Why Alfred Binet Developed IQ Testing for Students. Retrieved from https://www.verywellmind.com/history-of-intelligence-testing-2795581

Crowther-Heyck, H. (2005). Herbert  A. Simon: The bounds of reason in modern America . JHU Press.

De Ligt, J., Willemsen, M. H., Van Bon, B. W., Kleefstra, T., Yntema, H. G., Kroes, T., … & del Rosario, M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability . New England Journal of Medicine, 367 (20), 1921-1929.

Flynn, J. R. (1984). The mean IQ of Americans: Massive gains 1932 to 1978. Psychological Bulletin, 95 (1), 29.

Gardner, H. (1983). Frames of Mind . New York: Basic Books.

Gardner, H. (1987). The theory of multiple intelligence . Annals Of Dyslexia , 37, 19-35

Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV . Multivariate Behavioral Research, 48 (5), 639-662.

Gladwell, M. (2008). Outliers: The story of success. Little, Brown. Harkness, S., Super, C., & Keefer, C. (1992). Culture and ethnicity: In M. Levine, W. Carey & A. Crocker (Eds.), Developmental-behavioral pediatrics (pp. 103-108).

Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57 , 253-270.

Jensen, A. R. (1982). Reaction time and psychometric g. In A model for intelligence (pp. 93-132). Springer, Berlin, Heidelberg.

Heidelber Kalat, J.W. (2014). Introduction to Psychology , 10th Edition. Cengage Learning.

Lally, M., & French, S. V. (2018). Introduction  to Psychology . Canada: College of Lake County Foundation, 176-212.

Mayer, J. D., Caruso, D. R., & Salovey, P. (1999). Emotional intelligence meets traditional standards for an intelligence . Intelligence, 27(4), 267-298.

Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th ed.). New York, NY: W. H. Freeman and Company.

Okagaki, L., & Sternberg, R. J. (1993). Parental beliefs and children’s school performance . Child Development, 64 (1), 36-56.

Pahor, A., Stavropoulos, T., Jaeggi, S. M., & Seitz, A. R. (2019). Validation of a matrix reasoning task for mobile devices. Behavior Research Methods, 51 (5), 2256-2267.

Rosenthal, R., & Jacobson, L. (1968). Pygmalion in the classroom . The urban review, 3 (1), 16-20.

Salovey, P., & Mayer, J. D. (1990). Emotional intelligence . Imagination, Cognition and Personality, 9 (3), 185-211.

Sansone, S. M., Schneider, A., Bickel, E., Berry-Kravis, E., Prescott, C., & Hessl, D. (2014). Improving IQ measurement in intellectual disabilities using true deviation from population norms. Journal of Neurodevelopmental Disorders, 6 (1), 16.

Spearmen, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15 , 107-197.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African-Americans. Journal of Personality and Social Psychology, 69 , 797-811.

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence . CUP Archive.

Sternberg, R. J. (1997). The concept of intelligence and its role in lifelong learning and success . American psychologist, 52 (10), 1030.

Sternberg, R. J. (2003). Contemporary theories of intelligence. Handbook of psychology , 21-45.

Treffert, D. A. (2009). The savant syndrome: an extraordinary condition. A synopsis: past, present, future . Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1522), 1351-1357.

Thomson, G. (1947). Charles Spearman, 1863-1945.

Tuma, J. M., & Appelbaum, A. S. (1980). Reliability and practice effects of WISC-R IQ estimates in a normal population . Educational and Psychological Measurement, 40 (3), 671-678.

Wober, J. M. (1971). Towards an understanding of the Kiganda concept of intelligence. Social Psychology Section, Department of Sociology, Makerere University.

Print Friendly, PDF & Email

IMAGES

  1. How psychology does define problem solving?

    problem solving ability test in psychology

  2. Problem-Solving Strategies: Definition and 5 Techniques to Try

    problem solving ability test in psychology

  3. stages of problem solving process in cognitive psychology

    problem solving ability test in psychology

  4. (PDF) Problem-solving Ability Test (PSAT)

    problem solving ability test in psychology

  5. समस्या समाधान योग्यता परीक्षण( problem solving ability test) PSAT-D

    problem solving ability test in psychology

  6. Problem Solving Ability Test Results on Each Indicator Control Class

    problem solving ability test in psychology

COMMENTS

  1. Creative Problem-Solving Test

    This Creative Problem-solving Test was developed to evaluate whether your attitude towards problem-solving and the manner in which you approach a problem are conducive to creative thinking. This ...

  2. Ability Test

    Ability tests, also known as aptitude tests, assess various cognitive abilities such as verbal, numerical, abstract reasoning, spatial awareness, logical reasoning, and problem-solving. These tests are designed to evaluate individuals' natural talents and potential to learn and succeed in specific areas. For example, a verbal ability test ...

  3. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  4. Intelligence and Creativity in Problem Solving: The Importance of Test

    The second test feature, problem space, determines the degrees of freedom cognition has to its disposal in solving a problem. For instance, cognition will go through a wider search path when problem constraints are less well defined and, consequently, data will differ accordingly.

  5. Problem Solving

    Abstract. Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined.

  6. Assessing complex problem-solving skills in under 20 minutes.

    Rationale: Assessing complex problem-solving skills (CPS) is of great interest to many researchers. However, existing assessments require long testing times making them difficult to include in many studies and experiments. Here, we propose a specific composition of microworlds based on the MicroDYN approach, which allows for valid estimation of CPS in a substantially reduced amount of time (N ...

  7. (PDF) Problem-solving Ability Test (PSAT)

    Problem-solving Ability Test (PSAT) September 2022. Authors: Ishfaq Ahmad Bhat. Annamalai University.

  8. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  9. Intelligence and creativity in problem solving: The importance of test

    This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g ...

  10. Problem Solving Ability Test

    Pr oblem Solving Ability T est (PSA T) Problem Solving Ability T e st (PSA T), developed by L.N. Dubey and C.P. Mathur, enables us. to measure the problem solving ability of the participant. Problem solving a bility is highly. correlated with intelligence, reasoning ability and mathematical abil ity. This test has a.

  11. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  12. Problem Solving test factsheet

    Psychometric properties of the Problem Solving test. The metrics reported below are based on a sample size (N) of at least 1,000 candidates unless indicated otherwise. Reliability: Cronbach's alpha coefficient = .72. Face validity: Candidates rated this test as accurately measuring their skills (average score of 3.88 out of 5.00).

  13. Problem Solving Skills Test

    Step 3: Define the Problem. (Questions 3, 9) Now that you understand the problem, define it clearly and completely. Writing a clear problem definition forces you to establish specific boundaries for the problem. This keeps the scope from growing too large, and it helps you stay focused on the main issues.

  14. Solving Problems the Cognitive-Behavioral Way

    Key points. Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to ...

  15. Intelligence and Creativity in Problem Solving: The Importance of Test

    Much of cognition research is based on psychometric tests, such as tests assessing the constructs of intelligence or creativity. We argue that three test features must be explicitly considered, however, in order to reliably infer from individual's test performance the underlying cognitive processes. These three test features are: definition of the construct, problem space, and knowledge domain.

  16. 7.3 Problem-Solving

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid.

  17. Intelligence and Creativity in Problem Solving: The Importance of Test

    Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities ...

  18. Creative Problem-Solving Test

    This Creative Problem-solving Test was developed to evaluate whether your attitude towards problem-solving and the manner in which you approach a problem are conducive to creative thinking. This ...

  19. Test Your Problem-Solving Skills

    Test Your Problem-Solving Skills. Personalize Your Emails Personalize your monthly updates from BrainFacts.org by choosing the topics that you care about most! Sign Up Find a Neuroscientist Engage local scientists to educate your community about the brain. ...

  20. A Test of the Testing Effect: Acquiring Problem‐Solving Skills From

    1. Introduction. The testing effect demonstrates that after an initial study opportunity, testing is more effective for long-term retention than restudying (for a review, see Roediger & Karpicke, 2006a).At an immediate retention test, there may be no performance differences between students in a condition that only studied and a condition that also engaged in testing (i.e., retrieving the ...

  21. Cognitive Ability Test: Practice Questions (2024)

    A cognitive test is an assessment tool designed to measure an individual's cognitive abilities, which are the mental processes involved in acquiring, processing, storing and using information. Cognitive assessments are used to evaluate various aspects of cognitive functioning, including memory, attention, problem-solving, reasoning, language ...

  22. 10 Best Problem-Solving Therapy Worksheets & Activities

    14 Steps for Problem-Solving Therapy. Creators of PST D'Zurilla and Nezu suggest a 14-step approach to achieve the following problem-solving treatment goals (Dobson, 2011): Enhance positive problem orientation. Decrease negative orientation. Foster ability to apply rational problem-solving skills.

  23. Theories Of Intelligence In Psychology

    Intelligence Today. Intelligence in psychology refers to the mental capacity to learn from experiences, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one's environment. It includes skills such as problem-solving, critical thinking, learning quickly, and understanding complex ideas.